
If \[(x) = a\cos \theta + b\sin \theta ,y = a\sin \theta - b\cos \theta \] , show that \[\dfrac{{{y^2}{d^2}y}}{{d{x^2}}} - \dfrac{{xdy}}{{dx}} + y = 0\] .
Answer
565.5k+ views
Hint: Here you can see \[\sin \theta ,\,\cos \theta \] are there in the problem along with \[x,y,\dfrac{{dy}}{{dx}},\dfrac{{{d^2}y}}{{d{x^2}}}\] . So, this sum is a mix of a little bit of trigonometry and a little but differential equations. Students need basic knowledge of both to solve this kind of numerical. In this sum, we will differentiate x and y with respect to \[\theta \] and then solve. So, let's crack this problem.
Complete step by step solution:
Given:
$ x = a\cos \theta + b\sin \theta \\
y = a\sin \theta - b\cos \theta $
And we need to show that
$
{y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y = 0
$
We will firstly differentiate x, y with respect to \[\theta \] .
i.e.:
$
\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\cos \theta + b\sin \theta )\\
\Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\cos \theta ) + \dfrac{d}{{d\theta }}(b\sin \theta )
$
Since, a, b are constants and \[\dfrac{d}{{d\theta }}(\cos \theta ) = - \sin \theta ,\,\dfrac{d}{{d\theta }}(\sin \theta ) = \cos \theta \]
So, $ \dfrac{{dx}}{{d\theta }} = ( - a\sin \theta ) + (b\cos \theta ) .....(i) $
Similarly,
$\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\sin \theta - b\cos \theta )\\
\Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\sin \theta ) + \dfrac{d}{{d\theta }}( - b\cos \theta ) $
Here, you see a, -b are constants, and $\dfrac{d}{{d\theta }}(\sin \theta ) = \cos \theta \,\,and\dfrac{d}{{d\theta }}(\cos \theta ) = - \sin \theta \,\,\,\ , $
Hence,
$
\Rightarrow\dfrac{{dy}}{{d\theta }} = a\cos \theta + [( - b)( - \sin \theta )]\\
\Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta + b\sin \theta .....(ii) $
If you see closely, equation(i) and equation(ii), you will find that
Equation(i)
$ \Rightarrow\dfrac{{dx}}{{d\theta }} = - a\sin \theta + b\cos \theta \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = - (a\sin \theta - b\cos \theta )\\
\Rightarrow \dfrac{{dx}}{{d\theta }} = - y [y = a\sin \theta - b\cos \theta (given)] .....(iii)
$
Similarly, in equation(ii), you see,
$
\dfrac{{dy}}{{d\theta }} = a\cos \theta + b\sin \theta = x [x = a\cos \theta + b\sin \theta ] .....(iv)
$
We will find out \[\dfrac{{dy}}{{dx}}\] and write it in the form of x, y.
$
\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{dx}}{{d\theta }} [\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} + \dfrac{{d\theta }}{{dx}}]\\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{(\dfrac{{dy}}{{d\theta }})}}{{(\dfrac{{dx}}{{d\theta }})}} [\dfrac{1}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{d\theta }}{{dx}}]
$
Now, we put the values of \[\dfrac{{dy}}{{d\theta }}and\dfrac{{dx}}{{d\theta }}\] in the above equation,
$\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta + b\sin \theta }}{{ - (a\sin \theta - b\cos \theta )}}\\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{x}{{ - y}} [From\,(iii),(iv)] .....(v)
$
We will find out \[\dfrac{{{d^2}y}}{{d{x^2}}}\] and show the required.
We know,
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{dy}}{{dx}})\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{x}{{ - y}}) [From\,(v)] $
[Since, \[\dfrac{{{d^2}y}}{{d{x^2}}}\] is the double derivation of y with respect to x.]
And, \[\dfrac{d}{{dx}}(uv) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] , we will use this formula to find out \[\dfrac{d}{{dx}}(\dfrac{x}{{ - y}})\] .
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = x\dfrac{d}{{dy}}(\dfrac{{ - 1}}{y}) + (\dfrac{{ - 1}}{y})\dfrac{d}{{dx}}(x)\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = ( - x)( - 1){y^{ - 1 - 1}}\dfrac{{dy}}{{dx}} + (\dfrac{{ - 1}}{y})\dfrac{{dx}}{{dx}}\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{x}{{{y^2}}}\dfrac{{dy}}{{dx}} - \dfrac{1}{y} $
Now, we will multiply both sides of the equation with \[{y^2}\] , and we will get,
$ \Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} = x\dfrac{{dy}}{{dx}} - \dfrac{{{y^2}}}{y}\\
\Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} = - y\\
\Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y = 0 $
This is the required equation, you needed to show.
Note:
Students often get confused between \[{(\dfrac{{dy}}{{dx}})^{2\,}}\,and\,\dfrac{{{d^2}y}}{{d{x^2}}}\] . \[{(\dfrac{{dy}}{{dx}})^{2\,}} \ne \dfrac{{{d^2}y}}{{d{x^2}}}\] because \[{(\dfrac{{dy}}{{dx}})^{2\,}}\] is the square of \[\dfrac{{dy}}{{dx}}\] (i.e.: differentiation of y with respect to x) but \[\dfrac{{{d^2}y}}{{d{x^2}}}\] is the double differentiation of y with respect to x. You can also solve this numerical by finding out, \[\dfrac{{dy}}{{dx}},\dfrac{{{d^2}y}}{{d{x^2}}},{y^2}\] and putting it in the L.H.S of the equation \[{y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y\] and calculate it and get 0 which is equal to R.H.S.
Complete step by step solution:
Given:
$ x = a\cos \theta + b\sin \theta \\
y = a\sin \theta - b\cos \theta $
And we need to show that
$
{y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y = 0
$
We will firstly differentiate x, y with respect to \[\theta \] .
i.e.:
$
\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\cos \theta + b\sin \theta )\\
\Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\cos \theta ) + \dfrac{d}{{d\theta }}(b\sin \theta )
$
Since, a, b are constants and \[\dfrac{d}{{d\theta }}(\cos \theta ) = - \sin \theta ,\,\dfrac{d}{{d\theta }}(\sin \theta ) = \cos \theta \]
So, $ \dfrac{{dx}}{{d\theta }} = ( - a\sin \theta ) + (b\cos \theta ) .....(i) $
Similarly,
$\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\sin \theta - b\cos \theta )\\
\Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\sin \theta ) + \dfrac{d}{{d\theta }}( - b\cos \theta ) $
Here, you see a, -b are constants, and $\dfrac{d}{{d\theta }}(\sin \theta ) = \cos \theta \,\,and\dfrac{d}{{d\theta }}(\cos \theta ) = - \sin \theta \,\,\,\ , $
Hence,
$
\Rightarrow\dfrac{{dy}}{{d\theta }} = a\cos \theta + [( - b)( - \sin \theta )]\\
\Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta + b\sin \theta .....(ii) $
If you see closely, equation(i) and equation(ii), you will find that
Equation(i)
$ \Rightarrow\dfrac{{dx}}{{d\theta }} = - a\sin \theta + b\cos \theta \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = - (a\sin \theta - b\cos \theta )\\
\Rightarrow \dfrac{{dx}}{{d\theta }} = - y [y = a\sin \theta - b\cos \theta (given)] .....(iii)
$
Similarly, in equation(ii), you see,
$
\dfrac{{dy}}{{d\theta }} = a\cos \theta + b\sin \theta = x [x = a\cos \theta + b\sin \theta ] .....(iv)
$
We will find out \[\dfrac{{dy}}{{dx}}\] and write it in the form of x, y.
$
\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{dx}}{{d\theta }} [\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} + \dfrac{{d\theta }}{{dx}}]\\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{(\dfrac{{dy}}{{d\theta }})}}{{(\dfrac{{dx}}{{d\theta }})}} [\dfrac{1}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{d\theta }}{{dx}}]
$
Now, we put the values of \[\dfrac{{dy}}{{d\theta }}and\dfrac{{dx}}{{d\theta }}\] in the above equation,
$\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta + b\sin \theta }}{{ - (a\sin \theta - b\cos \theta )}}\\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{x}{{ - y}} [From\,(iii),(iv)] .....(v)
$
We will find out \[\dfrac{{{d^2}y}}{{d{x^2}}}\] and show the required.
We know,
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{dy}}{{dx}})\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{x}{{ - y}}) [From\,(v)] $
[Since, \[\dfrac{{{d^2}y}}{{d{x^2}}}\] is the double derivation of y with respect to x.]
And, \[\dfrac{d}{{dx}}(uv) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] , we will use this formula to find out \[\dfrac{d}{{dx}}(\dfrac{x}{{ - y}})\] .
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = x\dfrac{d}{{dy}}(\dfrac{{ - 1}}{y}) + (\dfrac{{ - 1}}{y})\dfrac{d}{{dx}}(x)\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = ( - x)( - 1){y^{ - 1 - 1}}\dfrac{{dy}}{{dx}} + (\dfrac{{ - 1}}{y})\dfrac{{dx}}{{dx}}\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{x}{{{y^2}}}\dfrac{{dy}}{{dx}} - \dfrac{1}{y} $
Now, we will multiply both sides of the equation with \[{y^2}\] , and we will get,
$ \Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} = x\dfrac{{dy}}{{dx}} - \dfrac{{{y^2}}}{y}\\
\Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} = - y\\
\Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y = 0 $
This is the required equation, you needed to show.
Note:
Students often get confused between \[{(\dfrac{{dy}}{{dx}})^{2\,}}\,and\,\dfrac{{{d^2}y}}{{d{x^2}}}\] . \[{(\dfrac{{dy}}{{dx}})^{2\,}} \ne \dfrac{{{d^2}y}}{{d{x^2}}}\] because \[{(\dfrac{{dy}}{{dx}})^{2\,}}\] is the square of \[\dfrac{{dy}}{{dx}}\] (i.e.: differentiation of y with respect to x) but \[\dfrac{{{d^2}y}}{{d{x^2}}}\] is the double differentiation of y with respect to x. You can also solve this numerical by finding out, \[\dfrac{{dy}}{{dx}},\dfrac{{{d^2}y}}{{d{x^2}}},{y^2}\] and putting it in the L.H.S of the equation \[{y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y\] and calculate it and get 0 which is equal to R.H.S.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

