
If we have an expession as ${{20}^{3-2{{x}^{2}}}}={{\left( 40\sqrt{5} \right)}^{3{{x}^{2}}-2}}$ , then the value of x is
(a) $\pm \sqrt{\dfrac{13}{2}}$
(b) $\pm \sqrt{\dfrac{12}{13}}$
(c) $\pm \sqrt{\dfrac{4}{5}}$
(d) $\pm \sqrt{\dfrac{5}{4}}$
Answer
484.8k+ views
Hint: In order to solve this problem, we need to make the base common as we can see that the unknown is in the power. By making the base common we can directly equate the powers and solve for x.
Complete step-by-step solution:
We are given expression with x as the unknown.
We need to find the value of x.
As we can see in the expression there are two different bases in the left-hand side and the right-hand side.
As our unknown is in the power, we need to make the base common in order to equate the powers.
Therefore, let's make the power to 20 on both sides.
The expression looks as follows,
${{20}^{3-2{{x}^{2}}}}={{\left( 40\sqrt{5} \right)}^{3{{x}^{2}}-2}}$
Let's take the 40 from the right-hand side inside the bracket.
For that we need to square the 40, the square of 40 is 1600.
Hence, substituting we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{1600\times 5} \right)}^{3{{x}^{2}}-2}}$
Solving we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{8000} \right)}^{3{{x}^{2}}-2}}$
But now we can see that 8000 is the cube of 20.
So we can replace 8000 by ${{20}^{3}}$, and we can replace the square root by $\dfrac{1}{2}$ in the power.
Substituting we get,
${{20}^{3-2{{x}^{2}}}}={{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}}$
Now, we can directly equate the powers with each other as base are the same on both sides.
Hence, equating the powers we get,
$3-2{{x}^{2}}=\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)$
Solving this for x we get,
$\begin{align}
& 2\left( 3-2{{x}^{2}} \right)=3\left( 3{{x}^{2}}-2 \right) \\
& 6-4{{x}^{2}}=9{{x}^{2}}-6 \\
& 13{{x}^{2}}=12 \\
& {{x}^{2}}=\dfrac{12}{13} \\
\end{align}$
Taking the square root we get,
$x=\pm \sqrt{\dfrac{12}{13}}$
Hence, the correct option is (b).
Note: We can also do this question with a different approach. We can take the log on both sides and arrive at the same equation. It can be shown as follows,
Taking log on both sides we get,
$\ln \left( {{20}^{3-2{{x}^{2}}}} \right)=\ln \left( {{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}} \right)$
Now, we can use the property that $\ln \left( {{a}^{b}} \right)=a\ln b$ , we get,
$\begin{align}
& \left( 3-2{{x}^{2}} \right)\ln \left( 20 \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right)\ln \left( 20 \right) \\
& \left( 3-2{{x}^{2}} \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right) \\
\end{align}$
Hence, we can see that we arrive at the same position.
Complete step-by-step solution:
We are given expression with x as the unknown.
We need to find the value of x.
As we can see in the expression there are two different bases in the left-hand side and the right-hand side.
As our unknown is in the power, we need to make the base common in order to equate the powers.
Therefore, let's make the power to 20 on both sides.
The expression looks as follows,
${{20}^{3-2{{x}^{2}}}}={{\left( 40\sqrt{5} \right)}^{3{{x}^{2}}-2}}$
Let's take the 40 from the right-hand side inside the bracket.
For that we need to square the 40, the square of 40 is 1600.
Hence, substituting we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{1600\times 5} \right)}^{3{{x}^{2}}-2}}$
Solving we get,
${{20}^{3-2{{x}^{2}}}}={{\left( \sqrt{8000} \right)}^{3{{x}^{2}}-2}}$
But now we can see that 8000 is the cube of 20.
So we can replace 8000 by ${{20}^{3}}$, and we can replace the square root by $\dfrac{1}{2}$ in the power.
Substituting we get,
${{20}^{3-2{{x}^{2}}}}={{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}}$
Now, we can directly equate the powers with each other as base are the same on both sides.
Hence, equating the powers we get,
$3-2{{x}^{2}}=\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)$
Solving this for x we get,
$\begin{align}
& 2\left( 3-2{{x}^{2}} \right)=3\left( 3{{x}^{2}}-2 \right) \\
& 6-4{{x}^{2}}=9{{x}^{2}}-6 \\
& 13{{x}^{2}}=12 \\
& {{x}^{2}}=\dfrac{12}{13} \\
\end{align}$
Taking the square root we get,
$x=\pm \sqrt{\dfrac{12}{13}}$
Hence, the correct option is (b).
Note: We can also do this question with a different approach. We can take the log on both sides and arrive at the same equation. It can be shown as follows,
Taking log on both sides we get,
$\ln \left( {{20}^{3-2{{x}^{2}}}} \right)=\ln \left( {{20}^{\dfrac{3}{2}\left( 3{{x}^{2}}-2 \right)}} \right)$
Now, we can use the property that $\ln \left( {{a}^{b}} \right)=a\ln b$ , we get,
$\begin{align}
& \left( 3-2{{x}^{2}} \right)\ln \left( 20 \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right)\ln \left( 20 \right) \\
& \left( 3-2{{x}^{2}} \right)=\left( \dfrac{3}{2}\left( 3{{x}^{2}}-2 \right) \right) \\
\end{align}$
Hence, we can see that we arrive at the same position.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
When people say No pun intended what does that mea class 8 english CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ounces are in 500 mL class 8 maths CBSE

Which king started the organization of the Kumbh fair class 8 social science CBSE

Advantages and disadvantages of science

What is BLO What is the full form of BLO class 8 social science CBSE
