Answer
Verified
430.2k+ views
Hint: Convert \[{{\cos }^{-1}}\dfrac{1}{\sqrt{2}}\] into \[{{\tan }^{-1}}\] function by assuming 1 as base and \[\sqrt{2}\] as hypotenuse. Also convert \[{{\sin }^{-1}}\dfrac{4}{\sqrt{17}}\] into \[{{\tan }^{-1}}\] function by assuming 4 as perpendicular and \[\sqrt{17}\] as hypotenuse. Use Pythagoras theorem given by: - \[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\] for the above two process. Here, h = hypotenuse, p = perpendicular and b = base. Now, apply the identity: - \[{{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\] to simplify. Finally apply the rule: - \[\tan \left( {{\tan }^{-1}}x \right)=x\] to get the answer.
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow E=\tan \left[ {{\cos }^{-1}}\dfrac{1}{\sqrt{2}}-{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} \right]\]
Let us consider \[{{\cos }^{-1}}\] and \[{{\sin }^{-1}}\] functions into \[{{\tan }^{-1}}\] function.
We know that, \[\cos \theta \] = $\dfrac{\text{Base}}{\text{Hypotenuse}}$ \[\Rightarrow \theta ={{\cos }^{-1}}\]$(\dfrac{\text{Base}}{\text{Hypotenuse}})$
On comparing the above relation with \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\], we get, base = 1, hypotenuse = \[\sqrt{2}\].
Therefore, applying Pythagoras theorem, we get,
\[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\], where h = hypotenuse, p = perpendicular and b = base.
\[\begin{align}
& \Rightarrow {{\left( \sqrt{2} \right)}^{2}}={{p}^{2}}+{{1}^{2}} \\
& \Rightarrow 2={{p}^{2}}+1 \\
& \Rightarrow {{p}^{2}}=1 \\
& \Rightarrow p=1 \\
\end{align}\]
Hence, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{1}{1} \right)={{\tan }^{-1}}1\].
Now, we know that, \[\sin \theta =\dfrac{p}{h}\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{p}{h} \right)\].
On comparing the above relation with \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\], we have, p = 4, h = \[\sqrt{17}\].
Therefore, applying Pythagoras theorem, we get,
\[\begin{align}
& \Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( \sqrt{17} \right)}^{2}}={{4}^{2}}+{{b}^{2}} \\
& \Rightarrow 17=16+{{b}^{2}} \\
& \Rightarrow {{b}^{2}}=1 \\
& \Rightarrow b=1 \\
\end{align}\]
Hence, \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{4}{1} \right)={{\tan }^{-1}}4\].
So, the expression becomes: -
\[\Rightarrow E=\tan \left[ {{\tan }^{-1}}1-{{\tan }^{-1}}4 \right]\]
Applying the identity: - \[{{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\], we get,
\[\begin{align}
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{1-4}{1+1\times 4} \right) \right] \\
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{-3}{5} \right) \right] \\
\end{align}\]
Finally using the identity, \[\tan \left[ {{\tan }^{-1}}x \right]=x\], we have,
\[\Rightarrow E=\dfrac{-3}{5}\]
Hence, option (d) is the correct answer.
Note: One may note that we can decrease the steps of solution a little by directly saying that \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}1\]. Here, we knew that \[{{\cos }^{-1}}\left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. So, \[\dfrac{\pi }{4}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]. Hence, the angle was \[\dfrac{\pi }{4}\] and \[\tan \left( \dfrac{\pi }{4} \right)=1\]. So, we did not required Pythagoras theorem here. But for the conversion of \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\] into \[{{\tan }^{-1}}\] function we needed Pythagoras theorem because we don’t know any particular angle for that.
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow E=\tan \left[ {{\cos }^{-1}}\dfrac{1}{\sqrt{2}}-{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} \right]\]
Let us consider \[{{\cos }^{-1}}\] and \[{{\sin }^{-1}}\] functions into \[{{\tan }^{-1}}\] function.
We know that, \[\cos \theta \] = $\dfrac{\text{Base}}{\text{Hypotenuse}}$ \[\Rightarrow \theta ={{\cos }^{-1}}\]$(\dfrac{\text{Base}}{\text{Hypotenuse}})$
On comparing the above relation with \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\], we get, base = 1, hypotenuse = \[\sqrt{2}\].
Therefore, applying Pythagoras theorem, we get,
\[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\], where h = hypotenuse, p = perpendicular and b = base.
\[\begin{align}
& \Rightarrow {{\left( \sqrt{2} \right)}^{2}}={{p}^{2}}+{{1}^{2}} \\
& \Rightarrow 2={{p}^{2}}+1 \\
& \Rightarrow {{p}^{2}}=1 \\
& \Rightarrow p=1 \\
\end{align}\]
Hence, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{1}{1} \right)={{\tan }^{-1}}1\].
Now, we know that, \[\sin \theta =\dfrac{p}{h}\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{p}{h} \right)\].
On comparing the above relation with \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\], we have, p = 4, h = \[\sqrt{17}\].
Therefore, applying Pythagoras theorem, we get,
\[\begin{align}
& \Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( \sqrt{17} \right)}^{2}}={{4}^{2}}+{{b}^{2}} \\
& \Rightarrow 17=16+{{b}^{2}} \\
& \Rightarrow {{b}^{2}}=1 \\
& \Rightarrow b=1 \\
\end{align}\]
Hence, \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{4}{1} \right)={{\tan }^{-1}}4\].
So, the expression becomes: -
\[\Rightarrow E=\tan \left[ {{\tan }^{-1}}1-{{\tan }^{-1}}4 \right]\]
Applying the identity: - \[{{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\], we get,
\[\begin{align}
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{1-4}{1+1\times 4} \right) \right] \\
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{-3}{5} \right) \right] \\
\end{align}\]
Finally using the identity, \[\tan \left[ {{\tan }^{-1}}x \right]=x\], we have,
\[\Rightarrow E=\dfrac{-3}{5}\]
Hence, option (d) is the correct answer.
Note: One may note that we can decrease the steps of solution a little by directly saying that \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}1\]. Here, we knew that \[{{\cos }^{-1}}\left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. So, \[\dfrac{\pi }{4}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]. Hence, the angle was \[\dfrac{\pi }{4}\] and \[\tan \left( \dfrac{\pi }{4} \right)=1\]. So, we did not required Pythagoras theorem here. But for the conversion of \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\] into \[{{\tan }^{-1}}\] function we needed Pythagoras theorem because we don’t know any particular angle for that.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE