
If two vectors a and b are perpendicular. If a magnitude 8 and b has magnitude 3 what is $\left| {a - 2b} \right|$?
Answer
574.5k+ views
Hint: To find the value of $\left| {\overrightarrow a - 2\overrightarrow b } \right|$, calculate the value ${\left| {\overrightarrow a - 2\overrightarrow b } \right|^2}$ of and take square root of that value.
How you can find the value of ${\left| {\overrightarrow a - 2\overrightarrow b } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \left( {\overrightarrow a - 2\overrightarrow b } \right)\left( {\overrightarrow a - 2\overrightarrow b } \right)$
Complete step by step solution: 1) Let us see what is given in the question, we have given the value of $|\overrightarrow a |\& |\overrightarrow b |$as follows
$ \Rightarrow |\overrightarrow a | = 8$ and
$ \Rightarrow |\overrightarrow b | = 3$
2) First of all, find the value of ${\left| {\overrightarrow a - 2\overrightarrow b } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \left( {\overrightarrow a - 2\overrightarrow b } \right)\left( {\overrightarrow a - 2\overrightarrow b } \right)$
$\begin{gathered}
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a \left( {\overrightarrow a - 2\overrightarrow b } \right) - 2\overrightarrow b \left( {\overrightarrow a - 2\overrightarrow b } \right) \\
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a .\overrightarrow a - \overrightarrow a .2\overrightarrow b - 2\overrightarrow b .\overrightarrow a - 2\overrightarrow b .2\overrightarrow b \\
\end{gathered} $
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a .\overrightarrow a - 2\overrightarrow a ..\overrightarrow b - 2\overrightarrow a .\overrightarrow b - 4\overrightarrow b \overrightarrow b $ (as $ \Rightarrow \overrightarrow a .2\overrightarrow b = 2.\overrightarrow b \overrightarrow a = 2\overrightarrow a \overrightarrow b $)
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\overrightarrow {\left| a \right|} ^2} - 4\overrightarrow a .\overrightarrow b - 4{\overrightarrow {\left| b \right|} ^2}$ …….(1)
3) Now, we have to find the value of $\overrightarrow a .\overrightarrow b $as given below
The dot product of a and b is given by
4) $ \Rightarrow \overrightarrow a .\overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \theta $, where $\theta $ is the angle between a and b. we have given that a and b are perpendicular. Therefore, $\theta = {90^ \circ }$and $\cos {90^ \circ } = 0$
$ \Rightarrow \overrightarrow a .\overrightarrow b = 0$
5) Put the values of $\overrightarrow a ,\overrightarrow b \& \overrightarrow a .\overrightarrow b $ in equation (1) we get,
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\overrightarrow {\left| a \right|} ^2} - 4\overrightarrow a .\overrightarrow b - 4{\overrightarrow {\left| b \right|} ^2}$
$\begin{gathered}
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {8^2} - 4(0) - 4 \times {3^2} \\
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = 64 - 4 \times 9 = 64 - 36 \\
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = 28 \\
\end{gathered} $
Taking square root on both sides we get,
$ \Rightarrow \left| {\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {28} = 2\sqrt 7 $
Therefore, the value of $\left| {\overrightarrow a - 2\overrightarrow b } \right|$ is $2\sqrt 7 $.
Note: Types of vectors are given as follows:
1) Zero or Null Vector: When starting and ending points of a vector are same is called zero or null vector.
2) Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
3) Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
4) Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
5) Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is same in like vectors.
How you can find the value of ${\left| {\overrightarrow a - 2\overrightarrow b } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \left( {\overrightarrow a - 2\overrightarrow b } \right)\left( {\overrightarrow a - 2\overrightarrow b } \right)$
Complete step by step solution: 1) Let us see what is given in the question, we have given the value of $|\overrightarrow a |\& |\overrightarrow b |$as follows
$ \Rightarrow |\overrightarrow a | = 8$ and
$ \Rightarrow |\overrightarrow b | = 3$
2) First of all, find the value of ${\left| {\overrightarrow a - 2\overrightarrow b } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \left( {\overrightarrow a - 2\overrightarrow b } \right)\left( {\overrightarrow a - 2\overrightarrow b } \right)$
$\begin{gathered}
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a \left( {\overrightarrow a - 2\overrightarrow b } \right) - 2\overrightarrow b \left( {\overrightarrow a - 2\overrightarrow b } \right) \\
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a .\overrightarrow a - \overrightarrow a .2\overrightarrow b - 2\overrightarrow b .\overrightarrow a - 2\overrightarrow b .2\overrightarrow b \\
\end{gathered} $
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = \overrightarrow a .\overrightarrow a - 2\overrightarrow a ..\overrightarrow b - 2\overrightarrow a .\overrightarrow b - 4\overrightarrow b \overrightarrow b $ (as $ \Rightarrow \overrightarrow a .2\overrightarrow b = 2.\overrightarrow b \overrightarrow a = 2\overrightarrow a \overrightarrow b $)
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\overrightarrow {\left| a \right|} ^2} - 4\overrightarrow a .\overrightarrow b - 4{\overrightarrow {\left| b \right|} ^2}$ …….(1)
3) Now, we have to find the value of $\overrightarrow a .\overrightarrow b $as given below
The dot product of a and b is given by
4) $ \Rightarrow \overrightarrow a .\overrightarrow b = |\overrightarrow a ||\overrightarrow b |\cos \theta $, where $\theta $ is the angle between a and b. we have given that a and b are perpendicular. Therefore, $\theta = {90^ \circ }$and $\cos {90^ \circ } = 0$
$ \Rightarrow \overrightarrow a .\overrightarrow b = 0$
5) Put the values of $\overrightarrow a ,\overrightarrow b \& \overrightarrow a .\overrightarrow b $ in equation (1) we get,
$ \Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\overrightarrow {\left| a \right|} ^2} - 4\overrightarrow a .\overrightarrow b - 4{\overrightarrow {\left| b \right|} ^2}$
$\begin{gathered}
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {8^2} - 4(0) - 4 \times {3^2} \\
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = 64 - 4 \times 9 = 64 - 36 \\
\Rightarrow {\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = 28 \\
\end{gathered} $
Taking square root on both sides we get,
$ \Rightarrow \left| {\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {28} = 2\sqrt 7 $
Therefore, the value of $\left| {\overrightarrow a - 2\overrightarrow b } \right|$ is $2\sqrt 7 $.
Note: Types of vectors are given as follows:
1) Zero or Null Vector: When starting and ending points of a vector are same is called zero or null vector.
2) Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
3) Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
4) Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
5) Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is same in like vectors.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

