
If the vectors $ \overrightarrow a = 3\widehat i + \widehat j - 2\widehat k,\overrightarrow b = - \widehat i + 3\widehat j + 4\widehat k $ and $ \overrightarrow c = 4\widehat i - 2\widehat j - 6\widehat k $ constitute the sides of a $ \Delta ABC, $ then the length of the median bisecting the vector $ \overrightarrow c $ is
A. $ \sqrt 2 $
B. $ \sqrt {14} $
C. $ \sqrt {74} $
D. $ \sqrt 6 $
Answer
561.3k+ views
Hint: Length of the median is the vertex to the midpoint of the opposite side. Here we will first calculate the magnitude of the given vectors and then substitute the values of the magnitude of the vectors in the formula $ L = \dfrac{1}{2}\sqrt {2({a^2} + {b^2}) - {c^2}} $ and simplify for the resultant answer.
Complete step-by-step answer:
Take vectors and write respective sides of the given vectors.
$
\overrightarrow a = 3\widehat i + \widehat j - 2\widehat k = \overrightarrow {BC} \\
\overrightarrow b = - \widehat i + 3\widehat j + 4\widehat k = \overrightarrow {AC} \\
\overrightarrow c = 4\widehat i - 2\widehat j - 6\widehat k = \overrightarrow {AB} \\
$
Find its magnitude-
For vector $ \overrightarrow a = 3\widehat i + \widehat j - 2\widehat k = \overrightarrow {BC} $
$ \Rightarrow {\left| {\overrightarrow a } \right|^2} = {3^2} + {1^2} + {2^2} $
Simplify the above equation-
$
\Rightarrow {\left| {\overrightarrow a } \right|^2} = 9 + 1 + 4 \\
\Rightarrow {\left| {\overrightarrow a } \right|^2} = 14\;{\text{ }}....{\text{ (i)}} \\
$
For vector, \[\overrightarrow b = - \widehat i + 3\widehat j + 4\widehat k = \overrightarrow {AC} \]
$ \Rightarrow {\left| {\overrightarrow b } \right|^2} = {( - 1)^2} + {3^2} + {4^2} $
Simplify the above equation-
$
\Rightarrow {\left| {\overrightarrow b } \right|^2} = 1 + 9 + 16 \\
\Rightarrow {\left| {\overrightarrow b } \right|^2} = 26\;{\text{ }}....{\text{ (ii)}} \;
$
For vector, \[\overrightarrow c = 4\widehat i - 2\widehat j - 6\widehat k = \overrightarrow {AB} \]
$ \Rightarrow {\left| {\overrightarrow c } \right|^2} = {4^2} + {( - 2)^2} + {( - 6)^2} $
Simplify the above equation-
$
\Rightarrow {\left| {\overrightarrow c } \right|^2} = 16 + 4 + 36 \\
\Rightarrow {\left| {\overrightarrow c } \right|^2} = 56\;{\text{ }}....{\text{ (iii)}} \;
$
The median of the triangle is the line-segment joining a vertex to the mid-point of the opposite side thus bisecting that opposite side.
The length of the median bisecting the vector C is passing through AC,
$ \Rightarrow L = \dfrac{1}{2}\sqrt {2({a^2} + {b^2}) - {c^2}} $
Place values in the above equation using equations (i), (ii) and (iii) –
$ \Rightarrow L = \dfrac{1}{2}\sqrt {2(14 + 26) - 56} $
Simplify the above equation –
$
\Rightarrow L = \dfrac{1}{2}\sqrt {2(40) - 56} \\
\Rightarrow L = \dfrac{1}{2}\sqrt {80 - 56} \\
\Rightarrow L = \dfrac{1}{2}\sqrt {24} \\
$
The above equation can be re-written as –
$ \Rightarrow L = \dfrac{1}{2}\sqrt {4 \times 6} $
We know that - $ 4 = 2 \times 2 = {2^2} $ . place it in the above equation-
$ \Rightarrow L = \dfrac{1}{2}\sqrt {{2^2} \times 6} $
Square and square-root cancel each other.
$ \Rightarrow L = \dfrac{2}{2}\sqrt 6 $
Same terms from the numerator and the denominator cancel each other.
$ \Rightarrow L = \sqrt 6 $ Units
Hence, from the given multiple choices- the option D is the correct answer.
So, the correct answer is “Option D”.
Note: Remember the general formula for the median of the vectors. Know the difference between the median of the vectors and the median of the numbers. Each triangle has exactly the three medians, one from each vertex, and all the three vertices intersect each other at the point called the Centroid of the triangle.
Complete step-by-step answer:
Take vectors and write respective sides of the given vectors.
$
\overrightarrow a = 3\widehat i + \widehat j - 2\widehat k = \overrightarrow {BC} \\
\overrightarrow b = - \widehat i + 3\widehat j + 4\widehat k = \overrightarrow {AC} \\
\overrightarrow c = 4\widehat i - 2\widehat j - 6\widehat k = \overrightarrow {AB} \\
$
Find its magnitude-
For vector $ \overrightarrow a = 3\widehat i + \widehat j - 2\widehat k = \overrightarrow {BC} $
$ \Rightarrow {\left| {\overrightarrow a } \right|^2} = {3^2} + {1^2} + {2^2} $
Simplify the above equation-
$
\Rightarrow {\left| {\overrightarrow a } \right|^2} = 9 + 1 + 4 \\
\Rightarrow {\left| {\overrightarrow a } \right|^2} = 14\;{\text{ }}....{\text{ (i)}} \\
$
For vector, \[\overrightarrow b = - \widehat i + 3\widehat j + 4\widehat k = \overrightarrow {AC} \]
$ \Rightarrow {\left| {\overrightarrow b } \right|^2} = {( - 1)^2} + {3^2} + {4^2} $
Simplify the above equation-
$
\Rightarrow {\left| {\overrightarrow b } \right|^2} = 1 + 9 + 16 \\
\Rightarrow {\left| {\overrightarrow b } \right|^2} = 26\;{\text{ }}....{\text{ (ii)}} \;
$
For vector, \[\overrightarrow c = 4\widehat i - 2\widehat j - 6\widehat k = \overrightarrow {AB} \]
$ \Rightarrow {\left| {\overrightarrow c } \right|^2} = {4^2} + {( - 2)^2} + {( - 6)^2} $
Simplify the above equation-
$
\Rightarrow {\left| {\overrightarrow c } \right|^2} = 16 + 4 + 36 \\
\Rightarrow {\left| {\overrightarrow c } \right|^2} = 56\;{\text{ }}....{\text{ (iii)}} \;
$
The median of the triangle is the line-segment joining a vertex to the mid-point of the opposite side thus bisecting that opposite side.
The length of the median bisecting the vector C is passing through AC,
$ \Rightarrow L = \dfrac{1}{2}\sqrt {2({a^2} + {b^2}) - {c^2}} $
Place values in the above equation using equations (i), (ii) and (iii) –
$ \Rightarrow L = \dfrac{1}{2}\sqrt {2(14 + 26) - 56} $
Simplify the above equation –
$
\Rightarrow L = \dfrac{1}{2}\sqrt {2(40) - 56} \\
\Rightarrow L = \dfrac{1}{2}\sqrt {80 - 56} \\
\Rightarrow L = \dfrac{1}{2}\sqrt {24} \\
$
The above equation can be re-written as –
$ \Rightarrow L = \dfrac{1}{2}\sqrt {4 \times 6} $
We know that - $ 4 = 2 \times 2 = {2^2} $ . place it in the above equation-
$ \Rightarrow L = \dfrac{1}{2}\sqrt {{2^2} \times 6} $
Square and square-root cancel each other.
$ \Rightarrow L = \dfrac{2}{2}\sqrt 6 $
Same terms from the numerator and the denominator cancel each other.
$ \Rightarrow L = \sqrt 6 $ Units
Hence, from the given multiple choices- the option D is the correct answer.
So, the correct answer is “Option D”.
Note: Remember the general formula for the median of the vectors. Know the difference between the median of the vectors and the median of the numbers. Each triangle has exactly the three medians, one from each vertex, and all the three vertices intersect each other at the point called the Centroid of the triangle.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

