
If the sum of all the solutions of the equation $8\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1$ in $\left[ 0,\pi \right]$ is $k\pi $ , then $k$ is equal to.
(a) $\dfrac{8}{9}$
(b) $\dfrac{20}{9}$
(c) $\dfrac{2}{3}$
(d) $\dfrac{13}{9}$
Answer
603.3k+ views
Hint: For solving this question we will use some trigonometric formulae and then find the value of $x$ which will satisfy the given equation. After finding the solutions we will just add them and find the value of $k$.
Complete step-by-step solution -
Given:
$8\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1$ and $x\in \left[ 0,\pi \right]$
It is given that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ .
We will use the following formulae in solving this question:
$\begin{align}
& \cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B..........\left( 1 \right) \\
& \cos \left( A-B \right)=\cos A\cdot \cos B+\sin A\cdot \sin B..........\left( 2 \right) \\
& \cos \left( 3\theta \right)=4{{\cos }^{3}}\theta -3\cos \theta .............................\left( 3 \right) \\
& \cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}.....................................................\left( 4 \right) \\
& \sin \dfrac{\pi }{6}=\dfrac{1}{2}........................................................\left( 5 \right) \\
& \left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}................................\left( 6 \right) \\
& {{\cos }^{2}}x+{{\sin }^{2}}x=1...........................................\left( 7 \right) \\
\end{align}$
We have,
$8\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1$
Using (1) in the above equation,
\[8\cos x\cdot \left( \left( \cos \dfrac{\pi }{6}\cdot \cos x-\sin \dfrac{\pi }{6}\cdot \sin x \right)\times \left( \cos \dfrac{\pi }{6}\cdot \cos x+\sin \dfrac{\pi }{6}\cdot \sin x \right)-\dfrac{1}{2} \right)=1\]
Now, using (4) and (5) in the above equation,
\[\begin{align}
& 8\cos x\cdot \left( \left( \dfrac{\sqrt{3}}{2}\cdot \cos x-\dfrac{1}{2}\cdot \sin x \right)\times \left( \dfrac{\sqrt{3}}{2}\cdot \cos x+\dfrac{1}{2}\cdot \sin x \right)-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( \left( \dfrac{\sqrt{3}\cos x}{2}-\dfrac{\sin x}{2} \right)\times \left( \dfrac{\sqrt{3}\cos x}{2}+\dfrac{\sin x}{2} \right)-\dfrac{1}{2} \right)=1 \\
\end{align}\]
Now, using (6) in the above equation,
\[\begin{align}
& 8\cos x\cdot \left( {{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}-{{\left( \dfrac{\sin x}{2} \right)}^{2}}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( \dfrac{3{{\cos }^{2}}x}{4}-\dfrac{{{\sin }^{2}}x}{4}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( \dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{4}-\dfrac{{{\cos }^{2}}x}{4}-\dfrac{{{\sin }^{2}}x}{4}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( {{\cos }^{2}}x-\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{4} \right)-\dfrac{1}{2} \right)=1 \\
\end{align}\]
Now, using (7) in the above equation,
\[\begin{align}
& 8\cos x\cdot \left( {{\cos }^{2}}x-\dfrac{1}{4}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( {{\cos }^{2}}x-\dfrac{3}{4} \right)=1 \\
& \Rightarrow 2\left( 4\cos x\times {{\cos }^{2}}x-4\cos x\times \dfrac{3}{4} \right)=1 \\
& \Rightarrow 2\left( 4{{\cos }^{3}}x-3\cos x \right)=1 \\
\end{align}\]
Now, using (3) in the above equation,
$\begin{align}
& 2\times \cos \left( 3x \right)=1 \\
& \Rightarrow \cos \left( 3x \right)=\dfrac{1}{2}...............\left( 8 \right) \\
\end{align}$
Now, before we proceed we should know one important result which we will use here.
If $\cos x=\cos y$ , then general solution for $x$ in terms of y can be written as,
$x=2n\pi \pm y............\left( 9 \right)$ , where $n$ is any integer.
Before we find $x$ , we should remember that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ .
From (8) we have:
$\cos 3x=\dfrac{1}{2}$
We know that, $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ . Then,
$\cos 3x=\cos \dfrac{\pi }{3}$
Now, using (9) in the above equation,
$\begin{align}
& \cos 3x=\cos \dfrac{\pi }{3} \\
& \Rightarrow 3x=2n\pi \pm \dfrac{\pi }{3} \\
& \Rightarrow x=\dfrac{2n\pi }{3}\pm \dfrac{\pi }{9} \\
\end{align}$
First consider, $x=\dfrac{2n\pi }{3}+\dfrac{\pi }{9}$ ,
Put, $n=0$ . Then,
$\begin{align}
& x=0+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{\pi }{9}...........\left( 10 \right) \\
\end{align}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{7\pi }{9}..........\left( 11 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{4\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{13\pi }{9}\left( >\pi \right) \\
\end{align}$
Now consider, $x=\dfrac{2n\pi }{3}-\dfrac{\pi }{9}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{5\pi }{9}.............\left( 12 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{4\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{11\pi }{9}\left( >\pi \right) \\
\end{align}$
In above calculations we neglected the values which are greater than $\pi $ or lesser than 0.
From (10), (11) and (12) we have:
$\begin{align}
& x=\dfrac{\pi }{9} \\
& x=\dfrac{7\pi }{9} \\
& x=\dfrac{5\pi }{9} \\
\end{align}$
Then, sum of all the solutions $=\dfrac{\pi }{9}+\dfrac{7\pi }{9}+\dfrac{5\pi }{9}=\dfrac{13\pi }{9}=\dfrac{13}{9}\times \pi $ .
It is given that, sum of all the solutions $=k\pi $ .
Then, $k=\dfrac{13}{9}$ .
Thus, (d) is the correct option.
Note: Here, we should use each formula which is mentioned in the solution. And for finding the value of $x$ , we should remember that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ . Then, calculate the value of $k$ and match the correct option.
Complete step-by-step solution -
Given:
$8\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1$ and $x\in \left[ 0,\pi \right]$
It is given that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ .
We will use the following formulae in solving this question:
$\begin{align}
& \cos \left( A+B \right)=\cos A\cdot \cos B-\sin A\cdot \sin B..........\left( 1 \right) \\
& \cos \left( A-B \right)=\cos A\cdot \cos B+\sin A\cdot \sin B..........\left( 2 \right) \\
& \cos \left( 3\theta \right)=4{{\cos }^{3}}\theta -3\cos \theta .............................\left( 3 \right) \\
& \cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}.....................................................\left( 4 \right) \\
& \sin \dfrac{\pi }{6}=\dfrac{1}{2}........................................................\left( 5 \right) \\
& \left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}................................\left( 6 \right) \\
& {{\cos }^{2}}x+{{\sin }^{2}}x=1...........................................\left( 7 \right) \\
\end{align}$
We have,
$8\cos x\cdot \left( \cos \left( \dfrac{\pi }{6}+x \right)\cdot \cos \left( \dfrac{\pi }{6}-x \right)-\dfrac{1}{2} \right)=1$
Using (1) in the above equation,
\[8\cos x\cdot \left( \left( \cos \dfrac{\pi }{6}\cdot \cos x-\sin \dfrac{\pi }{6}\cdot \sin x \right)\times \left( \cos \dfrac{\pi }{6}\cdot \cos x+\sin \dfrac{\pi }{6}\cdot \sin x \right)-\dfrac{1}{2} \right)=1\]
Now, using (4) and (5) in the above equation,
\[\begin{align}
& 8\cos x\cdot \left( \left( \dfrac{\sqrt{3}}{2}\cdot \cos x-\dfrac{1}{2}\cdot \sin x \right)\times \left( \dfrac{\sqrt{3}}{2}\cdot \cos x+\dfrac{1}{2}\cdot \sin x \right)-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( \left( \dfrac{\sqrt{3}\cos x}{2}-\dfrac{\sin x}{2} \right)\times \left( \dfrac{\sqrt{3}\cos x}{2}+\dfrac{\sin x}{2} \right)-\dfrac{1}{2} \right)=1 \\
\end{align}\]
Now, using (6) in the above equation,
\[\begin{align}
& 8\cos x\cdot \left( {{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}-{{\left( \dfrac{\sin x}{2} \right)}^{2}}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( \dfrac{3{{\cos }^{2}}x}{4}-\dfrac{{{\sin }^{2}}x}{4}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( \dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{4}-\dfrac{{{\cos }^{2}}x}{4}-\dfrac{{{\sin }^{2}}x}{4}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( {{\cos }^{2}}x-\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{4} \right)-\dfrac{1}{2} \right)=1 \\
\end{align}\]
Now, using (7) in the above equation,
\[\begin{align}
& 8\cos x\cdot \left( {{\cos }^{2}}x-\dfrac{1}{4}-\dfrac{1}{2} \right)=1 \\
& \Rightarrow 8\cos x\cdot \left( {{\cos }^{2}}x-\dfrac{3}{4} \right)=1 \\
& \Rightarrow 2\left( 4\cos x\times {{\cos }^{2}}x-4\cos x\times \dfrac{3}{4} \right)=1 \\
& \Rightarrow 2\left( 4{{\cos }^{3}}x-3\cos x \right)=1 \\
\end{align}\]
Now, using (3) in the above equation,
$\begin{align}
& 2\times \cos \left( 3x \right)=1 \\
& \Rightarrow \cos \left( 3x \right)=\dfrac{1}{2}...............\left( 8 \right) \\
\end{align}$
Now, before we proceed we should know one important result which we will use here.
If $\cos x=\cos y$ , then general solution for $x$ in terms of y can be written as,
$x=2n\pi \pm y............\left( 9 \right)$ , where $n$ is any integer.
Before we find $x$ , we should remember that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ .
From (8) we have:
$\cos 3x=\dfrac{1}{2}$
We know that, $\cos \dfrac{\pi }{3}=\dfrac{1}{2}$ . Then,
$\cos 3x=\cos \dfrac{\pi }{3}$
Now, using (9) in the above equation,
$\begin{align}
& \cos 3x=\cos \dfrac{\pi }{3} \\
& \Rightarrow 3x=2n\pi \pm \dfrac{\pi }{3} \\
& \Rightarrow x=\dfrac{2n\pi }{3}\pm \dfrac{\pi }{9} \\
\end{align}$
First consider, $x=\dfrac{2n\pi }{3}+\dfrac{\pi }{9}$ ,
Put, $n=0$ . Then,
$\begin{align}
& x=0+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{\pi }{9}...........\left( 10 \right) \\
\end{align}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{7\pi }{9}..........\left( 11 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{4\pi }{3}+\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{13\pi }{9}\left( >\pi \right) \\
\end{align}$
Now consider, $x=\dfrac{2n\pi }{3}-\dfrac{\pi }{9}$
Put, $n=1$ . Then,
$\begin{align}
& x=\dfrac{2\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{5\pi }{9}.............\left( 12 \right) \\
\end{align}$
Put, $n=2$ . Then,
$\begin{align}
& x=\dfrac{4\pi }{3}-\dfrac{\pi }{9} \\
& \Rightarrow x=\dfrac{11\pi }{9}\left( >\pi \right) \\
\end{align}$
In above calculations we neglected the values which are greater than $\pi $ or lesser than 0.
From (10), (11) and (12) we have:
$\begin{align}
& x=\dfrac{\pi }{9} \\
& x=\dfrac{7\pi }{9} \\
& x=\dfrac{5\pi }{9} \\
\end{align}$
Then, sum of all the solutions $=\dfrac{\pi }{9}+\dfrac{7\pi }{9}+\dfrac{5\pi }{9}=\dfrac{13\pi }{9}=\dfrac{13}{9}\times \pi $ .
It is given that, sum of all the solutions $=k\pi $ .
Then, $k=\dfrac{13}{9}$ .
Thus, (d) is the correct option.
Note: Here, we should use each formula which is mentioned in the solution. And for finding the value of $x$ , we should remember that $x$ can take values from $0$ to $\pi $ including $0$ & $\pi $ . Then, calculate the value of $k$ and match the correct option.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

