
If the distance of the point \[P\left( {1, - 2,1} \right)\] from the plane \[x + 2y - 2z = \alpha \], where \[\alpha > 0\] is 5, then the foot of the perpendicular from \[P\] is
A. \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\]
B. \[\left( {\dfrac{4}{3}, - \dfrac{4}{3},\dfrac{1}{3}} \right)\]
C. \[\left( {\dfrac{1}{3},\dfrac{2}{3},\dfrac{{10}}{3}} \right)\]
D. \[\left( {\dfrac{2}{3}, - \dfrac{1}{3},\dfrac{5}{2}} \right)\]
Answer
512.7k+ views
Hint: First of all, find an equation with \[\alpha \] using given data and find its values. Since \[\alpha \] is a positive value, eliminate the negative value of \[\alpha \]. Then use the formula for the foot of the perpendicular to get the required answer.
Complete step-by-step answer:
Given that the distance from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = \alpha \] is 5.
So, we have
\[
\Rightarrow \left| {\dfrac{{1 + 2\left( { - 2} \right) - 2\left( 1 \right) - \alpha }}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{1 - 4 - 2 - \alpha }}{{\sqrt {1 + 4 + 4} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{ - \left( {5 + \alpha } \right)}}{{\sqrt 9 }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{\alpha + 5}}{3}} \right| = 5 \\
\Rightarrow \dfrac{{\alpha + 5}}{3} = \pm 5 \\
\Rightarrow \alpha + 5 = \pm 15 \\
\Rightarrow \alpha = - 5 \pm 15 \\
\Rightarrow \alpha = - 5 + 15, - 5 - 15 \\
\therefore \alpha = 10, - 20 \\
\]
Since \[\alpha > 0\], we have \[\alpha = 10\]. Therefore, the equation of the plane is \[x + 2y - 2z = 10\].
Let \[Q\left( {{x_1},{y_1},{z_1}} \right)\] be the foot of the perpendicular from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = 10\].
So, we have
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} - \left( { - 2} \right)}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {\left( 1 \right) + 2\left( { - 1} \right) - 2\left( 1 \right) - 10} \right]}}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {1 - 4 - 2 - 10} \right]}}{{\sqrt {1 + 4 + 4} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{15}}{9} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\]
Taking first and last terms, we get
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{5}{3} \\
\Rightarrow 3{x_1} - 3 = 5 \\
\Rightarrow 3{x_1} = 5 + 3 = 8 \\
\therefore {x_1} = \dfrac{8}{3} \\
\]
Taking second and last terms, we get
\[
\Rightarrow \dfrac{{{y_1} + 2}}{2} = \dfrac{5}{3} \\
\Rightarrow 3{y_1} + 6 = 10 \\
\Rightarrow 3{y_1} = 10 - 6 = 4 \\
\therefore {y_1} = \dfrac{4}{3} \\
\]
Taking third and last terms, we get
\[
\Rightarrow \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\Rightarrow 3{z_1} - 3 = - 10 \\
\Rightarrow 3{z_1} = - 10 + 3 = - 7 \\
\therefore {z_1} = \dfrac{{ - 7}}{3} \\
\]
Therefore, the foot of the perpendicular is \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\].
Thus, the correct option is A. \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\]
Note: If \[Q\left( {{x_1},{y_1},{z_1}} \right)\] is the foot of perpendicular from the point \[P\left( {{x_2},{y_2},{z_2}} \right)\] to the plane \[ax + by + cz + d = 0\] then we have \[\dfrac{{{x_1} - {x_2}}}{a} = \dfrac{{{y_1} - {y_2}}}{b} = \dfrac{{{z_1} - {z_2}}}{c} = \dfrac{{ - \left( {a{x_2} + b{y_2} + c{z_2} + d} \right)}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\].
Complete step-by-step answer:
Given that the distance from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = \alpha \] is 5.
So, we have
\[
\Rightarrow \left| {\dfrac{{1 + 2\left( { - 2} \right) - 2\left( 1 \right) - \alpha }}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{1 - 4 - 2 - \alpha }}{{\sqrt {1 + 4 + 4} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{ - \left( {5 + \alpha } \right)}}{{\sqrt 9 }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{\alpha + 5}}{3}} \right| = 5 \\
\Rightarrow \dfrac{{\alpha + 5}}{3} = \pm 5 \\
\Rightarrow \alpha + 5 = \pm 15 \\
\Rightarrow \alpha = - 5 \pm 15 \\
\Rightarrow \alpha = - 5 + 15, - 5 - 15 \\
\therefore \alpha = 10, - 20 \\
\]
Since \[\alpha > 0\], we have \[\alpha = 10\]. Therefore, the equation of the plane is \[x + 2y - 2z = 10\].
Let \[Q\left( {{x_1},{y_1},{z_1}} \right)\] be the foot of the perpendicular from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = 10\].
So, we have
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} - \left( { - 2} \right)}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {\left( 1 \right) + 2\left( { - 1} \right) - 2\left( 1 \right) - 10} \right]}}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {1 - 4 - 2 - 10} \right]}}{{\sqrt {1 + 4 + 4} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{15}}{9} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\]
Taking first and last terms, we get
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{5}{3} \\
\Rightarrow 3{x_1} - 3 = 5 \\
\Rightarrow 3{x_1} = 5 + 3 = 8 \\
\therefore {x_1} = \dfrac{8}{3} \\
\]
Taking second and last terms, we get
\[
\Rightarrow \dfrac{{{y_1} + 2}}{2} = \dfrac{5}{3} \\
\Rightarrow 3{y_1} + 6 = 10 \\
\Rightarrow 3{y_1} = 10 - 6 = 4 \\
\therefore {y_1} = \dfrac{4}{3} \\
\]
Taking third and last terms, we get
\[
\Rightarrow \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\Rightarrow 3{z_1} - 3 = - 10 \\
\Rightarrow 3{z_1} = - 10 + 3 = - 7 \\
\therefore {z_1} = \dfrac{{ - 7}}{3} \\
\]
Therefore, the foot of the perpendicular is \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\].
Thus, the correct option is A. \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\]
Note: If \[Q\left( {{x_1},{y_1},{z_1}} \right)\] is the foot of perpendicular from the point \[P\left( {{x_2},{y_2},{z_2}} \right)\] to the plane \[ax + by + cz + d = 0\] then we have \[\dfrac{{{x_1} - {x_2}}}{a} = \dfrac{{{y_1} - {y_2}}}{b} = \dfrac{{{z_1} - {z_2}}}{c} = \dfrac{{ - \left( {a{x_2} + b{y_2} + c{z_2} + d} \right)}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
