
If the distance of the point \[P\left( {1, - 2,1} \right)\] from the plane \[x + 2y - 2z = \alpha \], where \[\alpha > 0\] is 5, then the foot of the perpendicular from \[P\] is
A. \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\]
B. \[\left( {\dfrac{4}{3}, - \dfrac{4}{3},\dfrac{1}{3}} \right)\]
C. \[\left( {\dfrac{1}{3},\dfrac{2}{3},\dfrac{{10}}{3}} \right)\]
D. \[\left( {\dfrac{2}{3}, - \dfrac{1}{3},\dfrac{5}{2}} \right)\]
Answer
577.8k+ views
Hint: First of all, find an equation with \[\alpha \] using given data and find its values. Since \[\alpha \] is a positive value, eliminate the negative value of \[\alpha \]. Then use the formula for the foot of the perpendicular to get the required answer.
Complete step-by-step answer:
Given that the distance from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = \alpha \] is 5.
So, we have
\[
\Rightarrow \left| {\dfrac{{1 + 2\left( { - 2} \right) - 2\left( 1 \right) - \alpha }}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{1 - 4 - 2 - \alpha }}{{\sqrt {1 + 4 + 4} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{ - \left( {5 + \alpha } \right)}}{{\sqrt 9 }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{\alpha + 5}}{3}} \right| = 5 \\
\Rightarrow \dfrac{{\alpha + 5}}{3} = \pm 5 \\
\Rightarrow \alpha + 5 = \pm 15 \\
\Rightarrow \alpha = - 5 \pm 15 \\
\Rightarrow \alpha = - 5 + 15, - 5 - 15 \\
\therefore \alpha = 10, - 20 \\
\]
Since \[\alpha > 0\], we have \[\alpha = 10\]. Therefore, the equation of the plane is \[x + 2y - 2z = 10\].
Let \[Q\left( {{x_1},{y_1},{z_1}} \right)\] be the foot of the perpendicular from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = 10\].
So, we have
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} - \left( { - 2} \right)}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {\left( 1 \right) + 2\left( { - 1} \right) - 2\left( 1 \right) - 10} \right]}}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {1 - 4 - 2 - 10} \right]}}{{\sqrt {1 + 4 + 4} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{15}}{9} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\]
Taking first and last terms, we get
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{5}{3} \\
\Rightarrow 3{x_1} - 3 = 5 \\
\Rightarrow 3{x_1} = 5 + 3 = 8 \\
\therefore {x_1} = \dfrac{8}{3} \\
\]
Taking second and last terms, we get
\[
\Rightarrow \dfrac{{{y_1} + 2}}{2} = \dfrac{5}{3} \\
\Rightarrow 3{y_1} + 6 = 10 \\
\Rightarrow 3{y_1} = 10 - 6 = 4 \\
\therefore {y_1} = \dfrac{4}{3} \\
\]
Taking third and last terms, we get
\[
\Rightarrow \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\Rightarrow 3{z_1} - 3 = - 10 \\
\Rightarrow 3{z_1} = - 10 + 3 = - 7 \\
\therefore {z_1} = \dfrac{{ - 7}}{3} \\
\]
Therefore, the foot of the perpendicular is \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\].
Thus, the correct option is A. \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\]
Note: If \[Q\left( {{x_1},{y_1},{z_1}} \right)\] is the foot of perpendicular from the point \[P\left( {{x_2},{y_2},{z_2}} \right)\] to the plane \[ax + by + cz + d = 0\] then we have \[\dfrac{{{x_1} - {x_2}}}{a} = \dfrac{{{y_1} - {y_2}}}{b} = \dfrac{{{z_1} - {z_2}}}{c} = \dfrac{{ - \left( {a{x_2} + b{y_2} + c{z_2} + d} \right)}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\].
Complete step-by-step answer:
Given that the distance from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = \alpha \] is 5.
So, we have
\[
\Rightarrow \left| {\dfrac{{1 + 2\left( { - 2} \right) - 2\left( 1 \right) - \alpha }}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{1 - 4 - 2 - \alpha }}{{\sqrt {1 + 4 + 4} }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{ - \left( {5 + \alpha } \right)}}{{\sqrt 9 }}} \right| = 5 \\
\Rightarrow \left| {\dfrac{{\alpha + 5}}{3}} \right| = 5 \\
\Rightarrow \dfrac{{\alpha + 5}}{3} = \pm 5 \\
\Rightarrow \alpha + 5 = \pm 15 \\
\Rightarrow \alpha = - 5 \pm 15 \\
\Rightarrow \alpha = - 5 + 15, - 5 - 15 \\
\therefore \alpha = 10, - 20 \\
\]
Since \[\alpha > 0\], we have \[\alpha = 10\]. Therefore, the equation of the plane is \[x + 2y - 2z = 10\].
Let \[Q\left( {{x_1},{y_1},{z_1}} \right)\] be the foot of the perpendicular from \[P\left( {1, - 2,1} \right)\] to the plane \[x + 2y - 2z = 10\].
So, we have
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} - \left( { - 2} \right)}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {\left( 1 \right) + 2\left( { - 1} \right) - 2\left( 1 \right) - 10} \right]}}{{\sqrt {{{\left( 1 \right)}^2} + {{\left( 2 \right)}^2} + {{\left( { - 2} \right)}^2}} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{ - \left[ {1 - 4 - 2 - 10} \right]}}{{\sqrt {1 + 4 + 4} }} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{{15}}{9} \\
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{{{y_1} + 2}}{2} = \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\]
Taking first and last terms, we get
\[
\Rightarrow \dfrac{{{x_1} - 1}}{1} = \dfrac{5}{3} \\
\Rightarrow 3{x_1} - 3 = 5 \\
\Rightarrow 3{x_1} = 5 + 3 = 8 \\
\therefore {x_1} = \dfrac{8}{3} \\
\]
Taking second and last terms, we get
\[
\Rightarrow \dfrac{{{y_1} + 2}}{2} = \dfrac{5}{3} \\
\Rightarrow 3{y_1} + 6 = 10 \\
\Rightarrow 3{y_1} = 10 - 6 = 4 \\
\therefore {y_1} = \dfrac{4}{3} \\
\]
Taking third and last terms, we get
\[
\Rightarrow \dfrac{{{z_1} - 1}}{{ - 2}} = \dfrac{5}{3} \\
\Rightarrow 3{z_1} - 3 = - 10 \\
\Rightarrow 3{z_1} = - 10 + 3 = - 7 \\
\therefore {z_1} = \dfrac{{ - 7}}{3} \\
\]
Therefore, the foot of the perpendicular is \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\].
Thus, the correct option is A. \[\left( {\dfrac{8}{3},\dfrac{4}{3}, - \dfrac{7}{3}} \right)\]
Note: If \[Q\left( {{x_1},{y_1},{z_1}} \right)\] is the foot of perpendicular from the point \[P\left( {{x_2},{y_2},{z_2}} \right)\] to the plane \[ax + by + cz + d = 0\] then we have \[\dfrac{{{x_1} - {x_2}}}{a} = \dfrac{{{y_1} - {y_2}}}{b} = \dfrac{{{z_1} - {z_2}}}{c} = \dfrac{{ - \left( {a{x_2} + b{y_2} + c{z_2} + d} \right)}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\].
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

