
If the distance of P from $\left( {1,1,1} \right)$ which is equal to double the distance of P from y-axis, then the locus P is
A. \[3{x^2} - {y^2} + 3{z^2} - 2x - 2y - 2z - 3 = 0\]
B. \[3{x^2} - {y^2} + 3m{z^2} - 2x - 2y - 2z - 3 = 0\]
C. \[3{x^2} + 3{y^2} + 3{z^2} - 2x - 2y - 2z - 3 = 0\]
D. \[3{x^2} - {y^2} + 3{z^2} + 2x + 2y + 2z - 3 = 0\]
Answer
565.8k+ views
Hint: Locus is basically a set of all the points where the location of those points satisfies under some specific condition. For example, we are having some points and we have to find the location of all the points that mean the set of all the points under some specific condition, then that set of all the points is known as locus.
Complete step-by-step answer:
We have to find the distance of P from $\left( {1,1,1} \right)$ which is equal to double the distance of P from y-axis
Therefore, let us assume the coordinates of P such that P$\left( {x,y,z} \right)$
We are given that distance of P from $\left( {1,1,1} \right)$
Therefore, distance of P$\left( {x,y,z} \right)$ from $\left( {1,1,1} \right)$ is
\[ \Rightarrow \]$\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2} + {{\left( {z - 1} \right)}^2}} $
\[ \Rightarrow \]$\sqrt {{x^2} + 1 - 2x + {y^2} + 1 - 2y + {z^2} + 1 - 2z} $
\[ \Rightarrow \]$\sqrt {{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3} $
Using formula:\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Also, distance of P from y-axis is given by $\sqrt {{x^2} + {y^2}} $
Now according to the given condition the distance of P from $\left( {1,1,1} \right)$ is equal to double the distance of P from y-axis. Therefore
\[ \Rightarrow \]$\sqrt {{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3} = 2\sqrt {{x^2} + {y^2}} $
Doing square on both sides,
\[ \Rightarrow \]\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3 = 4\left( {{x^2} + {z^2}} \right)\]
Square root and square cancel each other
\[ \Rightarrow \]\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3 = 4{x^2} + 4{y^2}\]
\[ \Rightarrow \]\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3 - 4{x^2} - 4{y^2} = 0\]
Taking all the terms to left hand side & arranging
\[ \Rightarrow \] \[- 3{x^2} + {y^2} - 3{z^2} - 2x - 2y - 2z + 3 = 0\]
Taking minus sign common on both sides & cancels
\[ \Rightarrow \]\[3{x^2} - {y^2} + 3{z^2} + 2x + 2y + 2z - 3 = 0\]
So, option (D) is correct.
Note: Distance formula between \[2\] points $\left( {p,q} \right)$ and $\left( {u,v} \right)$ is $\sqrt {{{\left( {p - u} \right)}^2} + {{\left( {q - v} \right)}^2}} $. If points are in \[2d\], then distance formula for \[2\] points \[\left( {{x_1},{y_1}} \right){\text{ }}\& {\text{ }}\left( {{x_2},{y_2}} \right)\] is \[\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \]. If points are in 3d, then distance formula for \[3\] points is \[\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2} + {{\left( {{z_1} - {z_2}} \right)}^2}} \] for 2 points.\[\left( {{x_1},{y_1},{z_1}} \right){\text{ }}\& {\text{ }}\left( {{x_2},{y_2},{z_2}} \right)\].$$
Complete step-by-step answer:
We have to find the distance of P from $\left( {1,1,1} \right)$ which is equal to double the distance of P from y-axis
Therefore, let us assume the coordinates of P such that P$\left( {x,y,z} \right)$
We are given that distance of P from $\left( {1,1,1} \right)$
Therefore, distance of P$\left( {x,y,z} \right)$ from $\left( {1,1,1} \right)$ is
\[ \Rightarrow \]$\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2} + {{\left( {z - 1} \right)}^2}} $
\[ \Rightarrow \]$\sqrt {{x^2} + 1 - 2x + {y^2} + 1 - 2y + {z^2} + 1 - 2z} $
\[ \Rightarrow \]$\sqrt {{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3} $
Using formula:\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Also, distance of P from y-axis is given by $\sqrt {{x^2} + {y^2}} $
Now according to the given condition the distance of P from $\left( {1,1,1} \right)$ is equal to double the distance of P from y-axis. Therefore
\[ \Rightarrow \]$\sqrt {{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3} = 2\sqrt {{x^2} + {y^2}} $
Doing square on both sides,
\[ \Rightarrow \]\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3 = 4\left( {{x^2} + {z^2}} \right)\]
Square root and square cancel each other
\[ \Rightarrow \]\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3 = 4{x^2} + 4{y^2}\]
\[ \Rightarrow \]\[{x^2} + {y^2} + {z^2} - 2x - 2y - 2z + 3 - 4{x^2} - 4{y^2} = 0\]
Taking all the terms to left hand side & arranging
\[ \Rightarrow \] \[- 3{x^2} + {y^2} - 3{z^2} - 2x - 2y - 2z + 3 = 0\]
Taking minus sign common on both sides & cancels
\[ \Rightarrow \]\[3{x^2} - {y^2} + 3{z^2} + 2x + 2y + 2z - 3 = 0\]
So, option (D) is correct.
Note: Distance formula between \[2\] points $\left( {p,q} \right)$ and $\left( {u,v} \right)$ is $\sqrt {{{\left( {p - u} \right)}^2} + {{\left( {q - v} \right)}^2}} $. If points are in \[2d\], then distance formula for \[2\] points \[\left( {{x_1},{y_1}} \right){\text{ }}\& {\text{ }}\left( {{x_2},{y_2}} \right)\] is \[\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \]. If points are in 3d, then distance formula for \[3\] points is \[\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2} + {{\left( {{z_1} - {z_2}} \right)}^2}} \] for 2 points.\[\left( {{x_1},{y_1},{z_1}} \right){\text{ }}\& {\text{ }}\left( {{x_2},{y_2},{z_2}} \right)\].$$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

