
If the coordinates of the mid points of a triangle be \[\left( {3, - 2} \right)\] , \[\left( { - 3,1} \right)\] and \[\left( {4, - 3} \right)\] , then find the coordinates of its vertices.
Answer
540k+ views
Hint: To find the vertices of the triangle, we firstly let the three vertices to be in variable form and then use the midpoint for finding the midpoints of the sides of the triangle using the considered points. After that, we just solve for both the \[x\] and \[y\] coordinates and obtain the vertices of the triangle.
The midpoint formula,
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
Where, \[x_1\] and \[x_2\] are the \[x\] coordinates of the end points of the line segment and \[y_1\] and \[y_2\] are the \[y\] coordinates of the end points of the segment.
Complete step-by-step answer:
It is given that the coordinates of the mid points of the triangle are \[\left( {3, - 2} \right)\] , \[\left( { - 3,1} \right)\] and \[\left( {4, - 3} \right)\] ,
Let the vertices be \[\left( {x,y} \right)\] , \[\left( {a,b} \right)\] and \[\left( {d,e} \right)\]
Now, in order to find the coordinates of the vertices,
We use the midpoint formula, i.e.
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
So, for the side \[AB\] , the midpoint, \[D\] is given by
$
\left( {3, - 2} \right) = \left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right) \\
\Rightarrow x + a = 6 \\
y + b = - 4 - - - - \left( 1 \right) \;
$
For the side \[AC\] , the midpoint \[F\] is given by
$
\left( { - 3,1} \right) = \left( {\dfrac{{x + d}}{2},\dfrac{{y + e}}{2}} \right) \\
\Rightarrow x + d = - 6 \\
y + e = 2 - - - - - \left( 2 \right) \;
$
For side \[BC\] , the midpoint \[E\] is given by
$
\left( {4, - 3} \right) = \left( {\dfrac{{a + d}}{2},\dfrac{{b + e}}{2}} \right) \\
\Rightarrow a + d = 8 \\
b + e = - 6 - - - - - - \left( 3 \right) \;
$
Solving equations \[\left( 2 \right)and\left( 3 \right)\] ,
$
x + d = - 6 \\
y + e = 2 \\
a + d = 8 \\
b + e = - 6 \\
\Rightarrow - 6 - x = 8 - a \\
\Rightarrow a - x = 14 - - - - \left( 4 \right) \\
and \; 2 - y = - 6 - b \\
\Rightarrow b - y = - 8 - - - - - \left( 5 \right) \;
$
Using \[\left( 4 \right)\] and \[\left( 5 \right)\] in \[\left( 1 \right)\]
$
x + a = 6 \\
a - x = 14 \\
\Rightarrow 2a = 20 \\
\Rightarrow a = 10 \\
\therefore x = 6 - a = 6 - 10 = - 4 \;
$
Solving for the values of \[y\] and \[b\]
$
y + b = - 4 \\
b - y = - 8 \\
\Rightarrow 2b = - 12 \\
\Rightarrow b = - 6 \\
\therefore y = - 4 - b = - 4 + 6 = 2 \;
$
Hence the points \[A\] and \[B\] are \[\left( { - 4,2} \right)\] and \[\left( {10, - 6} \right)\] respectively.
Finding the vertex \[C\] ,
From \[\left( 3 \right)\] ,
\[d = 8 - a = 8 - 10 = - 2\]
And
\[e = - 6 - b = - 6 + 6 = 0\]
So, the vertex \[C\] is \[\left( { - 2,0} \right)\]
Therefore, the coordinates of the vertices of the triangle are:
\[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\]
So, the correct answer is “ \[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\] ”.
Note: The midpoint formula is used to find the middle point of a line segment and is obtained simply by adding the coordinates and dividing it by \[2\] . This same thing is done for the \[x\] coordinates and the \[y\] coordinates of the end points of the segment.
The midpoint formula,
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
Where, \[x_1\] and \[x_2\] are the \[x\] coordinates of the end points of the line segment and \[y_1\] and \[y_2\] are the \[y\] coordinates of the end points of the segment.
Complete step-by-step answer:
It is given that the coordinates of the mid points of the triangle are \[\left( {3, - 2} \right)\] , \[\left( { - 3,1} \right)\] and \[\left( {4, - 3} \right)\] ,
Let the vertices be \[\left( {x,y} \right)\] , \[\left( {a,b} \right)\] and \[\left( {d,e} \right)\]
Now, in order to find the coordinates of the vertices,
We use the midpoint formula, i.e.
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
So, for the side \[AB\] , the midpoint, \[D\] is given by
$
\left( {3, - 2} \right) = \left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right) \\
\Rightarrow x + a = 6 \\
y + b = - 4 - - - - \left( 1 \right) \;
$
For the side \[AC\] , the midpoint \[F\] is given by
$
\left( { - 3,1} \right) = \left( {\dfrac{{x + d}}{2},\dfrac{{y + e}}{2}} \right) \\
\Rightarrow x + d = - 6 \\
y + e = 2 - - - - - \left( 2 \right) \;
$
For side \[BC\] , the midpoint \[E\] is given by
$
\left( {4, - 3} \right) = \left( {\dfrac{{a + d}}{2},\dfrac{{b + e}}{2}} \right) \\
\Rightarrow a + d = 8 \\
b + e = - 6 - - - - - - \left( 3 \right) \;
$
Solving equations \[\left( 2 \right)and\left( 3 \right)\] ,
$
x + d = - 6 \\
y + e = 2 \\
a + d = 8 \\
b + e = - 6 \\
\Rightarrow - 6 - x = 8 - a \\
\Rightarrow a - x = 14 - - - - \left( 4 \right) \\
and \; 2 - y = - 6 - b \\
\Rightarrow b - y = - 8 - - - - - \left( 5 \right) \;
$
Using \[\left( 4 \right)\] and \[\left( 5 \right)\] in \[\left( 1 \right)\]
$
x + a = 6 \\
a - x = 14 \\
\Rightarrow 2a = 20 \\
\Rightarrow a = 10 \\
\therefore x = 6 - a = 6 - 10 = - 4 \;
$
Solving for the values of \[y\] and \[b\]
$
y + b = - 4 \\
b - y = - 8 \\
\Rightarrow 2b = - 12 \\
\Rightarrow b = - 6 \\
\therefore y = - 4 - b = - 4 + 6 = 2 \;
$
Hence the points \[A\] and \[B\] are \[\left( { - 4,2} \right)\] and \[\left( {10, - 6} \right)\] respectively.
Finding the vertex \[C\] ,
From \[\left( 3 \right)\] ,
\[d = 8 - a = 8 - 10 = - 2\]
And
\[e = - 6 - b = - 6 + 6 = 0\]
So, the vertex \[C\] is \[\left( { - 2,0} \right)\]
Therefore, the coordinates of the vertices of the triangle are:
\[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\]
So, the correct answer is “ \[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\] ”.
Note: The midpoint formula is used to find the middle point of a line segment and is obtained simply by adding the coordinates and dividing it by \[2\] . This same thing is done for the \[x\] coordinates and the \[y\] coordinates of the end points of the segment.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

