
If the coordinates of the mid points of a triangle be \[\left( {3, - 2} \right)\] , \[\left( { - 3,1} \right)\] and \[\left( {4, - 3} \right)\] , then find the coordinates of its vertices.
Answer
525k+ views
Hint: To find the vertices of the triangle, we firstly let the three vertices to be in variable form and then use the midpoint for finding the midpoints of the sides of the triangle using the considered points. After that, we just solve for both the \[x\] and \[y\] coordinates and obtain the vertices of the triangle.
The midpoint formula,
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
Where, \[x_1\] and \[x_2\] are the \[x\] coordinates of the end points of the line segment and \[y_1\] and \[y_2\] are the \[y\] coordinates of the end points of the segment.
Complete step-by-step answer:
It is given that the coordinates of the mid points of the triangle are \[\left( {3, - 2} \right)\] , \[\left( { - 3,1} \right)\] and \[\left( {4, - 3} \right)\] ,
Let the vertices be \[\left( {x,y} \right)\] , \[\left( {a,b} \right)\] and \[\left( {d,e} \right)\]
Now, in order to find the coordinates of the vertices,
We use the midpoint formula, i.e.
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
So, for the side \[AB\] , the midpoint, \[D\] is given by
$
\left( {3, - 2} \right) = \left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right) \\
\Rightarrow x + a = 6 \\
y + b = - 4 - - - - \left( 1 \right) \;
$
For the side \[AC\] , the midpoint \[F\] is given by
$
\left( { - 3,1} \right) = \left( {\dfrac{{x + d}}{2},\dfrac{{y + e}}{2}} \right) \\
\Rightarrow x + d = - 6 \\
y + e = 2 - - - - - \left( 2 \right) \;
$
For side \[BC\] , the midpoint \[E\] is given by
$
\left( {4, - 3} \right) = \left( {\dfrac{{a + d}}{2},\dfrac{{b + e}}{2}} \right) \\
\Rightarrow a + d = 8 \\
b + e = - 6 - - - - - - \left( 3 \right) \;
$
Solving equations \[\left( 2 \right)and\left( 3 \right)\] ,
$
x + d = - 6 \\
y + e = 2 \\
a + d = 8 \\
b + e = - 6 \\
\Rightarrow - 6 - x = 8 - a \\
\Rightarrow a - x = 14 - - - - \left( 4 \right) \\
and \; 2 - y = - 6 - b \\
\Rightarrow b - y = - 8 - - - - - \left( 5 \right) \;
$
Using \[\left( 4 \right)\] and \[\left( 5 \right)\] in \[\left( 1 \right)\]
$
x + a = 6 \\
a - x = 14 \\
\Rightarrow 2a = 20 \\
\Rightarrow a = 10 \\
\therefore x = 6 - a = 6 - 10 = - 4 \;
$
Solving for the values of \[y\] and \[b\]
$
y + b = - 4 \\
b - y = - 8 \\
\Rightarrow 2b = - 12 \\
\Rightarrow b = - 6 \\
\therefore y = - 4 - b = - 4 + 6 = 2 \;
$
Hence the points \[A\] and \[B\] are \[\left( { - 4,2} \right)\] and \[\left( {10, - 6} \right)\] respectively.
Finding the vertex \[C\] ,
From \[\left( 3 \right)\] ,
\[d = 8 - a = 8 - 10 = - 2\]
And
\[e = - 6 - b = - 6 + 6 = 0\]
So, the vertex \[C\] is \[\left( { - 2,0} \right)\]
Therefore, the coordinates of the vertices of the triangle are:
\[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\]
So, the correct answer is “ \[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\] ”.
Note: The midpoint formula is used to find the middle point of a line segment and is obtained simply by adding the coordinates and dividing it by \[2\] . This same thing is done for the \[x\] coordinates and the \[y\] coordinates of the end points of the segment.
The midpoint formula,
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
Where, \[x_1\] and \[x_2\] are the \[x\] coordinates of the end points of the line segment and \[y_1\] and \[y_2\] are the \[y\] coordinates of the end points of the segment.
Complete step-by-step answer:
It is given that the coordinates of the mid points of the triangle are \[\left( {3, - 2} \right)\] , \[\left( { - 3,1} \right)\] and \[\left( {4, - 3} \right)\] ,
Let the vertices be \[\left( {x,y} \right)\] , \[\left( {a,b} \right)\] and \[\left( {d,e} \right)\]
Now, in order to find the coordinates of the vertices,
We use the midpoint formula, i.e.
\[P\left( {X,Y} \right) = \left( {\dfrac{{x_1 + x_2}}{2},\dfrac{{y_1 + y_2}}{2}} \right)\]
So, for the side \[AB\] , the midpoint, \[D\] is given by
$
\left( {3, - 2} \right) = \left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right) \\
\Rightarrow x + a = 6 \\
y + b = - 4 - - - - \left( 1 \right) \;
$
For the side \[AC\] , the midpoint \[F\] is given by
$
\left( { - 3,1} \right) = \left( {\dfrac{{x + d}}{2},\dfrac{{y + e}}{2}} \right) \\
\Rightarrow x + d = - 6 \\
y + e = 2 - - - - - \left( 2 \right) \;
$
For side \[BC\] , the midpoint \[E\] is given by
$
\left( {4, - 3} \right) = \left( {\dfrac{{a + d}}{2},\dfrac{{b + e}}{2}} \right) \\
\Rightarrow a + d = 8 \\
b + e = - 6 - - - - - - \left( 3 \right) \;
$
Solving equations \[\left( 2 \right)and\left( 3 \right)\] ,
$
x + d = - 6 \\
y + e = 2 \\
a + d = 8 \\
b + e = - 6 \\
\Rightarrow - 6 - x = 8 - a \\
\Rightarrow a - x = 14 - - - - \left( 4 \right) \\
and \; 2 - y = - 6 - b \\
\Rightarrow b - y = - 8 - - - - - \left( 5 \right) \;
$
Using \[\left( 4 \right)\] and \[\left( 5 \right)\] in \[\left( 1 \right)\]
$
x + a = 6 \\
a - x = 14 \\
\Rightarrow 2a = 20 \\
\Rightarrow a = 10 \\
\therefore x = 6 - a = 6 - 10 = - 4 \;
$
Solving for the values of \[y\] and \[b\]
$
y + b = - 4 \\
b - y = - 8 \\
\Rightarrow 2b = - 12 \\
\Rightarrow b = - 6 \\
\therefore y = - 4 - b = - 4 + 6 = 2 \;
$
Hence the points \[A\] and \[B\] are \[\left( { - 4,2} \right)\] and \[\left( {10, - 6} \right)\] respectively.
Finding the vertex \[C\] ,
From \[\left( 3 \right)\] ,
\[d = 8 - a = 8 - 10 = - 2\]
And
\[e = - 6 - b = - 6 + 6 = 0\]
So, the vertex \[C\] is \[\left( { - 2,0} \right)\]
Therefore, the coordinates of the vertices of the triangle are:
\[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\]
So, the correct answer is “ \[\left( { - 4,2} \right),\left( {10, - 6} \right),\left( { - 2,0} \right)\] ”.
Note: The midpoint formula is used to find the middle point of a line segment and is obtained simply by adding the coordinates and dividing it by \[2\] . This same thing is done for the \[x\] coordinates and the \[y\] coordinates of the end points of the segment.
Recently Updated Pages
Define the term system surroundings open system closed class 11 chemistry CBSE

Explain the formation of O2 molecule using molecular class 11 chemistry CBSE

H2O2 disproportionate into H2O and O2 The equivalent class 11 chemistry CBSE

What is the difference between depolarization and class 11 biology CBSE

Make a comparison and write down ways in which plant class 11 biology CBSE

On the outline map of India shade and label Kanara class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

