
If the axis of the parabola is horizontal and it passes through the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$, then find its equation?
(a) ${{y}^{2}}+3y-x-4=0$
(b) ${{y}^{2}}+3y+x-4=0$
(c) ${{y}^{2}}-3y-x-4=0$.
(d) None of these
Answer
568.8k+ views
Hint: We start solving the problem by recalling the general equation of the parabola whose axis is horizontal as ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$. We then substitute the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$ each at once to get the relations between ‘h’, ‘k’ and ‘a’. We then make the necessary calculations between these three relations to get the values of ‘h’, ‘k’ and ‘a’. We then substitute these values in the general equation of parabola to get the required equation.
Complete step by step answer:
According to the problem, we are given that the axis of the parabola is horizontal and we need to find the equation of parabola if it passes through the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$.
We know that the general equation of the parabola is ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$, if the axis of the parabola is horizontal.
Let us substitute the point $\left( 0,0 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 0-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}=-4ah$ ---(1).
Let us substitute the point $\left( 0,-1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( -1-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}+2k+1=-4ah$.
From equation (1) we get ${{k}^{2}}+2k+1={{k}^{2}}$.
$\Rightarrow 2k+1=0$.
$\Rightarrow 2k=-1$.
$\Rightarrow k=\dfrac{-1}{2}$ ---(2).
Let us substitute equation (2) in equation (1), we get
$\Rightarrow {{\left( \dfrac{-1}{2} \right)}^{2}}=-4ah$.
$\Rightarrow \dfrac{1}{4}=-4ah$.
$\Rightarrow h=\dfrac{-1}{16a}$ ---(3).
Let us substitute the point $\left( 6,1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 1-k \right)}^{2}}=4a\left( 6-h \right)$.
From equations (2) and (3), we get ${{\left( 1+\dfrac{1}{2} \right)}^{2}}=4a\left( 6-\left( \dfrac{-1}{16a} \right) \right)$.
$\Rightarrow {{\left( \dfrac{3}{2} \right)}^{2}}=4a\left( 6+\dfrac{1}{16a} \right)$.
$\Rightarrow \dfrac{9}{4}=24a+\dfrac{1}{4}$.
$\Rightarrow 2=24a$.
$\Rightarrow a=\dfrac{1}{12}$ ---(4).
Let us substitute equation (4) in equation (3).
So, we get $h=\dfrac{-1}{16\left( \dfrac{1}{12} \right)}=\dfrac{-3}{4}$ ---(5).
Let us substitute the values of ‘h’, ‘k’ and ‘a’ obtained from equations (2), (4) and (5) in ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( y+\dfrac{1}{2} \right)}^{2}}=4\left( \dfrac{1}{12} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow {{y}^{2}}+y+\dfrac{1}{4}=\left( \dfrac{1}{3} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow 3{{y}^{2}}+3y+\dfrac{3}{4}=x+\dfrac{3}{4}$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
So, we have found the equation of the parabola as $3{{y}^{2}}+3y-x=0$.
So, the correct answer is “Option d”.
Note: We can also take the general equation of the parabola whose axis is horizontal (axis is parallel to x-axis) as $x=a{{y}^{2}}+by+c$ which can be solved as shown below.
Let us substitute the point $\left( 0,0 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( 0 \right)}^{2}}+b\left( 0 \right)+c$.
$\Rightarrow 0=0+0+c$.
$\Rightarrow c=0$ ---(6).
Let us substitute the point $\left( 0,-1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( -1 \right)}^{2}}+b\left( -1 \right)+c$.
From equation (6).
$\Rightarrow 0=a-b+0$.
$\Rightarrow a-b=0$ ---(7).
Let us substitute the point $\left( 6,1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $6=a{{\left( 1 \right)}^{2}}+b\left( 1 \right)+c$.
From equation (6).
$\Rightarrow 6=a+b+0$.
$\Rightarrow a+b=6$ ---(8).
On solving equations (7) and (8), we get $a=3$ and $b=3$.
So, we get the equation of the parabola as $x=3{{y}^{2}}+3y+0$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
Complete step by step answer:
According to the problem, we are given that the axis of the parabola is horizontal and we need to find the equation of parabola if it passes through the points $\left( 0,0 \right)$, $\left( 0,-1 \right)$ and $\left( 6,1 \right)$.
We know that the general equation of the parabola is ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$, if the axis of the parabola is horizontal.
Let us substitute the point $\left( 0,0 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 0-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}=-4ah$ ---(1).
Let us substitute the point $\left( 0,-1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( -1-k \right)}^{2}}=4a\left( 0-h \right)$.
$\Rightarrow {{k}^{2}}+2k+1=-4ah$.
From equation (1) we get ${{k}^{2}}+2k+1={{k}^{2}}$.
$\Rightarrow 2k+1=0$.
$\Rightarrow 2k=-1$.
$\Rightarrow k=\dfrac{-1}{2}$ ---(2).
Let us substitute equation (2) in equation (1), we get
$\Rightarrow {{\left( \dfrac{-1}{2} \right)}^{2}}=-4ah$.
$\Rightarrow \dfrac{1}{4}=-4ah$.
$\Rightarrow h=\dfrac{-1}{16a}$ ---(3).
Let us substitute the point $\left( 6,1 \right)$ in the parabola ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( 1-k \right)}^{2}}=4a\left( 6-h \right)$.
From equations (2) and (3), we get ${{\left( 1+\dfrac{1}{2} \right)}^{2}}=4a\left( 6-\left( \dfrac{-1}{16a} \right) \right)$.
$\Rightarrow {{\left( \dfrac{3}{2} \right)}^{2}}=4a\left( 6+\dfrac{1}{16a} \right)$.
$\Rightarrow \dfrac{9}{4}=24a+\dfrac{1}{4}$.
$\Rightarrow 2=24a$.
$\Rightarrow a=\dfrac{1}{12}$ ---(4).
Let us substitute equation (4) in equation (3).
So, we get $h=\dfrac{-1}{16\left( \dfrac{1}{12} \right)}=\dfrac{-3}{4}$ ---(5).
Let us substitute the values of ‘h’, ‘k’ and ‘a’ obtained from equations (2), (4) and (5) in ${{\left( y-k \right)}^{2}}=4a\left( x-h \right)$.
So, we get ${{\left( y+\dfrac{1}{2} \right)}^{2}}=4\left( \dfrac{1}{12} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow {{y}^{2}}+y+\dfrac{1}{4}=\left( \dfrac{1}{3} \right)\left( x+\dfrac{3}{4} \right)$.
$\Rightarrow 3{{y}^{2}}+3y+\dfrac{3}{4}=x+\dfrac{3}{4}$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
So, we have found the equation of the parabola as $3{{y}^{2}}+3y-x=0$.
So, the correct answer is “Option d”.
Note: We can also take the general equation of the parabola whose axis is horizontal (axis is parallel to x-axis) as $x=a{{y}^{2}}+by+c$ which can be solved as shown below.
Let us substitute the point $\left( 0,0 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( 0 \right)}^{2}}+b\left( 0 \right)+c$.
$\Rightarrow 0=0+0+c$.
$\Rightarrow c=0$ ---(6).
Let us substitute the point $\left( 0,-1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $0=a{{\left( -1 \right)}^{2}}+b\left( -1 \right)+c$.
From equation (6).
$\Rightarrow 0=a-b+0$.
$\Rightarrow a-b=0$ ---(7).
Let us substitute the point $\left( 6,1 \right)$ in $x=a{{y}^{2}}+by+c$.
So, we get $6=a{{\left( 1 \right)}^{2}}+b\left( 1 \right)+c$.
From equation (6).
$\Rightarrow 6=a+b+0$.
$\Rightarrow a+b=6$ ---(8).
On solving equations (7) and (8), we get $a=3$ and $b=3$.
So, we get the equation of the parabola as $x=3{{y}^{2}}+3y+0$.
$\Rightarrow 3{{y}^{2}}+3y-x=0$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

