
If the 9th term of an AP is zero, then prove that the 29th term is double of the 19th term.
Answer
603.9k+ views
Hint- Here, we will be using the formula for finding the nth term of an arithmetic progression in order to write the expressions of 9th term, 29th term and 19th term of an arithmetic progression.
To prove- 29th term is double of 19th term of given AP i.e., ${a_{29}} = 2{a_{19}}$
Let us suppose the first term of an AP as ${a_1}$, common difference as d.
As we know that the nth term of any AP with first term as ${a_1}$ and common difference as d is given by ${a_n} = {a_1} + \left( {n - 1} \right)d{\text{ }} \to {\text{(1)}}$
Given, ${a_9} = 0$
Using equation (1), we have
${a_9} = {a_1} + \left( {9 - 1} \right)d \Rightarrow {a_1} + 8d = 0{\text{ }} \to {\text{(2)}}$
Let us simplify the equation which needs to be proved by putting n=29 in equation (1) for LHS and n=19 in equation (1) for RHS, we can write
$
{a_{29}} = 2{a_{19}} \Rightarrow {a_1} + \left( {29 - 1} \right)d = 2\left[ {{a_1} + \left( {19 - 1} \right)d} \right] \Rightarrow {a_1} + 28d = 2\left( {{a_1} + 18d} \right) \Rightarrow {a_1} + 28d = 2{a_1} + 36d \\
\Rightarrow {a_1} + 8d = 0{\text{ }} \to {\text{(3)}} \\
$
Clearly, the equation which needs to be proved is reduced into equation (3) so in order to prove the required equation ${a_{29}} = 2{a_{19}}$, equation (3) needs to be proved.
Since, equation (2) holds true and equation (3) needs to be proved whereas equations (2) and (3) are the same. Hence, the required equation is proved i.e., ${a_{29}} = 2{a_{19}}$(29th term of AP is double of 19th term of AP).
Note- In these types of problems, we will simplify the equation that needs to be proved with the help of general formulas for an arithmetic progression and then use the already given condition. In this particular problem the given condition is the same equation (obtained after simplification) which needs to be proved.
To prove- 29th term is double of 19th term of given AP i.e., ${a_{29}} = 2{a_{19}}$
Let us suppose the first term of an AP as ${a_1}$, common difference as d.
As we know that the nth term of any AP with first term as ${a_1}$ and common difference as d is given by ${a_n} = {a_1} + \left( {n - 1} \right)d{\text{ }} \to {\text{(1)}}$
Given, ${a_9} = 0$
Using equation (1), we have
${a_9} = {a_1} + \left( {9 - 1} \right)d \Rightarrow {a_1} + 8d = 0{\text{ }} \to {\text{(2)}}$
Let us simplify the equation which needs to be proved by putting n=29 in equation (1) for LHS and n=19 in equation (1) for RHS, we can write
$
{a_{29}} = 2{a_{19}} \Rightarrow {a_1} + \left( {29 - 1} \right)d = 2\left[ {{a_1} + \left( {19 - 1} \right)d} \right] \Rightarrow {a_1} + 28d = 2\left( {{a_1} + 18d} \right) \Rightarrow {a_1} + 28d = 2{a_1} + 36d \\
\Rightarrow {a_1} + 8d = 0{\text{ }} \to {\text{(3)}} \\
$
Clearly, the equation which needs to be proved is reduced into equation (3) so in order to prove the required equation ${a_{29}} = 2{a_{19}}$, equation (3) needs to be proved.
Since, equation (2) holds true and equation (3) needs to be proved whereas equations (2) and (3) are the same. Hence, the required equation is proved i.e., ${a_{29}} = 2{a_{19}}$(29th term of AP is double of 19th term of AP).
Note- In these types of problems, we will simplify the equation that needs to be proved with the help of general formulas for an arithmetic progression and then use the already given condition. In this particular problem the given condition is the same equation (obtained after simplification) which needs to be proved.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

