
If $\tan x=\dfrac{1}{\sqrt{7}}$ then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$ is equal to
a)$\dfrac{5}{7}$
b)$\dfrac{3}{7}$
c)$\dfrac{1}{12}$
d)$\dfrac{3}{4}$
Answer
608.7k+ views
Hint: Here, first we have to draw the figure and with the help of definition$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$mark the opposite side and adjacent side. From the figure find the value of hypotenuse using the Pythagoras theorem. Next, find $\sin x$ and $\cos x$. Now, to find $\csc x$ and $\sec x$ we have to apply the formulas:
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \sec x=\dfrac{1}{\cos x} \\
\end{align}$
Complete step-by-step answer:
Here, we are given that $\tan x=\dfrac{1}{\sqrt{7}}$.
Now, we have to find the value of $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc
}^{2}}\theta +{{\sec }^{2}}\theta }$.
We know that,
$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$
We have the figure,
Here, from the figure we can say that,
Opposite side = AC
Adjacent side = AB
Hypotenuse = BC
$\Delta ABC$ is a right angled triangle. Hence, we can apply the Pythagoras theorem.
Now, by Pythagoras theorem we have,
$\begin{align}
& {{(Hypotenuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}} \\
\end{align}$
Here, we have,
$\tan x=\dfrac{AC}{AB}$
AC = 1
AB = $\sqrt{7}$
Now, we can write:
$\begin{align}
& {{(BC)}^{2}}={{1}^{2}}+{{\left( \sqrt{7} \right)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}=1+7 \\
& \Rightarrow {{(BC)}^{2}}=8 \\
\end{align}$
Next, by taking square root on both the sides we get,
$BC=\sqrt{8}$
We know that,
$\begin{align}
& \sin x=\dfrac{Opposite\text{ }side}{Hypotenuse} \\
& \Rightarrow \sin x=\dfrac{AC}{BC} \\
& \Rightarrow \sin x=\dfrac{1}{\sqrt{8}} \\
\end{align}$
We also have that,
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \Rightarrow \csc x=\dfrac{1}{\dfrac{1}{\sqrt{8}}} \\
& \Rightarrow \csc x=1\times \dfrac{\sqrt{8}}{1} \\
& \Rightarrow \csc x=\sqrt{8} \\
\end{align}$
Similarly, we have,
$\begin{align}
& \cos x=\dfrac{\text{Adjacent }side}{Hypotenuse} \\
& \Rightarrow \cos x=\dfrac{AB}{BC} \\
& \Rightarrow \cos x=\dfrac{\sqrt{7}}{\sqrt{8}} \\
\end{align}$
We also know that,
$\begin{align}
& \sec x=\dfrac{1}{\cos x} \\
& \Rightarrow \sec x=\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{8}}} \\
& \Rightarrow \sec x=1\times \dfrac{\sqrt{8}}{\sqrt{7}} \\
& \Rightarrow \sec x=\dfrac{\sqrt{8}}{\sqrt{7}} \\
\end{align}$
Next, we have to find $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$.
$\begin{align}
& \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}$
Now, by taking LCM we get,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{8\times 7-8}{7}}{\dfrac{8\times 7+8}{7}}$
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{56-7}{7}}{\dfrac{56+7}{7}}$
$\begin{align}
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{7}\times \dfrac{7}{64} \\
\end{align}$
Next, by cancellation we get:
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{64}$
Again by cancellation we obtain,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$
Therefore, we can say that when $\tan x=\dfrac{1}{\sqrt{7}}$ , then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$.
Hence, the correct answer for this question is option (d).
Note: Here, you should have an idea about the trigonometric ratios. To have a better understanding you have to construct a right triangle and mark the angle as x , it’s opposite side as 1 and it’s adjacent side as $\sqrt{7}$.
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \sec x=\dfrac{1}{\cos x} \\
\end{align}$
Complete step-by-step answer:
Here, we are given that $\tan x=\dfrac{1}{\sqrt{7}}$.
Now, we have to find the value of $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc
}^{2}}\theta +{{\sec }^{2}}\theta }$.
We know that,
$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$
We have the figure,
Here, from the figure we can say that,
Opposite side = AC
Adjacent side = AB
Hypotenuse = BC
$\Delta ABC$ is a right angled triangle. Hence, we can apply the Pythagoras theorem.
Now, by Pythagoras theorem we have,
$\begin{align}
& {{(Hypotenuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}} \\
\end{align}$
Here, we have,
$\tan x=\dfrac{AC}{AB}$
AC = 1
AB = $\sqrt{7}$
Now, we can write:
$\begin{align}
& {{(BC)}^{2}}={{1}^{2}}+{{\left( \sqrt{7} \right)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}=1+7 \\
& \Rightarrow {{(BC)}^{2}}=8 \\
\end{align}$
Next, by taking square root on both the sides we get,
$BC=\sqrt{8}$
We know that,
$\begin{align}
& \sin x=\dfrac{Opposite\text{ }side}{Hypotenuse} \\
& \Rightarrow \sin x=\dfrac{AC}{BC} \\
& \Rightarrow \sin x=\dfrac{1}{\sqrt{8}} \\
\end{align}$
We also have that,
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \Rightarrow \csc x=\dfrac{1}{\dfrac{1}{\sqrt{8}}} \\
& \Rightarrow \csc x=1\times \dfrac{\sqrt{8}}{1} \\
& \Rightarrow \csc x=\sqrt{8} \\
\end{align}$
Similarly, we have,
$\begin{align}
& \cos x=\dfrac{\text{Adjacent }side}{Hypotenuse} \\
& \Rightarrow \cos x=\dfrac{AB}{BC} \\
& \Rightarrow \cos x=\dfrac{\sqrt{7}}{\sqrt{8}} \\
\end{align}$
We also know that,
$\begin{align}
& \sec x=\dfrac{1}{\cos x} \\
& \Rightarrow \sec x=\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{8}}} \\
& \Rightarrow \sec x=1\times \dfrac{\sqrt{8}}{\sqrt{7}} \\
& \Rightarrow \sec x=\dfrac{\sqrt{8}}{\sqrt{7}} \\
\end{align}$
Next, we have to find $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$.
$\begin{align}
& \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}$
Now, by taking LCM we get,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{8\times 7-8}{7}}{\dfrac{8\times 7+8}{7}}$
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{56-7}{7}}{\dfrac{56+7}{7}}$
$\begin{align}
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{7}\times \dfrac{7}{64} \\
\end{align}$
Next, by cancellation we get:
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{64}$
Again by cancellation we obtain,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$
Therefore, we can say that when $\tan x=\dfrac{1}{\sqrt{7}}$ , then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$.
Hence, the correct answer for this question is option (d).
Note: Here, you should have an idea about the trigonometric ratios. To have a better understanding you have to construct a right triangle and mark the angle as x , it’s opposite side as 1 and it’s adjacent side as $\sqrt{7}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

