
If $\tan x=\dfrac{1}{\sqrt{7}}$ then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$ is equal to
a)$\dfrac{5}{7}$
b)$\dfrac{3}{7}$
c)$\dfrac{1}{12}$
d)$\dfrac{3}{4}$
Answer
595.8k+ views
Hint: Here, first we have to draw the figure and with the help of definition$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$mark the opposite side and adjacent side. From the figure find the value of hypotenuse using the Pythagoras theorem. Next, find $\sin x$ and $\cos x$. Now, to find $\csc x$ and $\sec x$ we have to apply the formulas:
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \sec x=\dfrac{1}{\cos x} \\
\end{align}$
Complete step-by-step answer:
Here, we are given that $\tan x=\dfrac{1}{\sqrt{7}}$.
Now, we have to find the value of $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc
}^{2}}\theta +{{\sec }^{2}}\theta }$.
We know that,
$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$
We have the figure,
Here, from the figure we can say that,
Opposite side = AC
Adjacent side = AB
Hypotenuse = BC
$\Delta ABC$ is a right angled triangle. Hence, we can apply the Pythagoras theorem.
Now, by Pythagoras theorem we have,
$\begin{align}
& {{(Hypotenuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}} \\
\end{align}$
Here, we have,
$\tan x=\dfrac{AC}{AB}$
AC = 1
AB = $\sqrt{7}$
Now, we can write:
$\begin{align}
& {{(BC)}^{2}}={{1}^{2}}+{{\left( \sqrt{7} \right)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}=1+7 \\
& \Rightarrow {{(BC)}^{2}}=8 \\
\end{align}$
Next, by taking square root on both the sides we get,
$BC=\sqrt{8}$
We know that,
$\begin{align}
& \sin x=\dfrac{Opposite\text{ }side}{Hypotenuse} \\
& \Rightarrow \sin x=\dfrac{AC}{BC} \\
& \Rightarrow \sin x=\dfrac{1}{\sqrt{8}} \\
\end{align}$
We also have that,
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \Rightarrow \csc x=\dfrac{1}{\dfrac{1}{\sqrt{8}}} \\
& \Rightarrow \csc x=1\times \dfrac{\sqrt{8}}{1} \\
& \Rightarrow \csc x=\sqrt{8} \\
\end{align}$
Similarly, we have,
$\begin{align}
& \cos x=\dfrac{\text{Adjacent }side}{Hypotenuse} \\
& \Rightarrow \cos x=\dfrac{AB}{BC} \\
& \Rightarrow \cos x=\dfrac{\sqrt{7}}{\sqrt{8}} \\
\end{align}$
We also know that,
$\begin{align}
& \sec x=\dfrac{1}{\cos x} \\
& \Rightarrow \sec x=\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{8}}} \\
& \Rightarrow \sec x=1\times \dfrac{\sqrt{8}}{\sqrt{7}} \\
& \Rightarrow \sec x=\dfrac{\sqrt{8}}{\sqrt{7}} \\
\end{align}$
Next, we have to find $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$.
$\begin{align}
& \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}$
Now, by taking LCM we get,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{8\times 7-8}{7}}{\dfrac{8\times 7+8}{7}}$
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{56-7}{7}}{\dfrac{56+7}{7}}$
$\begin{align}
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{7}\times \dfrac{7}{64} \\
\end{align}$
Next, by cancellation we get:
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{64}$
Again by cancellation we obtain,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$
Therefore, we can say that when $\tan x=\dfrac{1}{\sqrt{7}}$ , then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$.
Hence, the correct answer for this question is option (d).
Note: Here, you should have an idea about the trigonometric ratios. To have a better understanding you have to construct a right triangle and mark the angle as x , it’s opposite side as 1 and it’s adjacent side as $\sqrt{7}$.
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \sec x=\dfrac{1}{\cos x} \\
\end{align}$
Complete step-by-step answer:
Here, we are given that $\tan x=\dfrac{1}{\sqrt{7}}$.
Now, we have to find the value of $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc
}^{2}}\theta +{{\sec }^{2}}\theta }$.
We know that,
$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$
We have the figure,
Here, from the figure we can say that,
Opposite side = AC
Adjacent side = AB
Hypotenuse = BC
$\Delta ABC$ is a right angled triangle. Hence, we can apply the Pythagoras theorem.
Now, by Pythagoras theorem we have,
$\begin{align}
& {{(Hypotenuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}} \\
\end{align}$
Here, we have,
$\tan x=\dfrac{AC}{AB}$
AC = 1
AB = $\sqrt{7}$
Now, we can write:
$\begin{align}
& {{(BC)}^{2}}={{1}^{2}}+{{\left( \sqrt{7} \right)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}=1+7 \\
& \Rightarrow {{(BC)}^{2}}=8 \\
\end{align}$
Next, by taking square root on both the sides we get,
$BC=\sqrt{8}$
We know that,
$\begin{align}
& \sin x=\dfrac{Opposite\text{ }side}{Hypotenuse} \\
& \Rightarrow \sin x=\dfrac{AC}{BC} \\
& \Rightarrow \sin x=\dfrac{1}{\sqrt{8}} \\
\end{align}$
We also have that,
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \Rightarrow \csc x=\dfrac{1}{\dfrac{1}{\sqrt{8}}} \\
& \Rightarrow \csc x=1\times \dfrac{\sqrt{8}}{1} \\
& \Rightarrow \csc x=\sqrt{8} \\
\end{align}$
Similarly, we have,
$\begin{align}
& \cos x=\dfrac{\text{Adjacent }side}{Hypotenuse} \\
& \Rightarrow \cos x=\dfrac{AB}{BC} \\
& \Rightarrow \cos x=\dfrac{\sqrt{7}}{\sqrt{8}} \\
\end{align}$
We also know that,
$\begin{align}
& \sec x=\dfrac{1}{\cos x} \\
& \Rightarrow \sec x=\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{8}}} \\
& \Rightarrow \sec x=1\times \dfrac{\sqrt{8}}{\sqrt{7}} \\
& \Rightarrow \sec x=\dfrac{\sqrt{8}}{\sqrt{7}} \\
\end{align}$
Next, we have to find $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$.
$\begin{align}
& \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}$
Now, by taking LCM we get,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{8\times 7-8}{7}}{\dfrac{8\times 7+8}{7}}$
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{56-7}{7}}{\dfrac{56+7}{7}}$
$\begin{align}
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{7}\times \dfrac{7}{64} \\
\end{align}$
Next, by cancellation we get:
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{64}$
Again by cancellation we obtain,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$
Therefore, we can say that when $\tan x=\dfrac{1}{\sqrt{7}}$ , then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$.
Hence, the correct answer for this question is option (d).
Note: Here, you should have an idea about the trigonometric ratios. To have a better understanding you have to construct a right triangle and mark the angle as x , it’s opposite side as 1 and it’s adjacent side as $\sqrt{7}$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

10 examples of evaporation in daily life with explanations

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

