
If $\tan x=\dfrac{1}{\sqrt{7}}$ then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$ is equal to
a)$\dfrac{5}{7}$
b)$\dfrac{3}{7}$
c)$\dfrac{1}{12}$
d)$\dfrac{3}{4}$
Answer
511.2k+ views
Hint: Here, first we have to draw the figure and with the help of definition$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$mark the opposite side and adjacent side. From the figure find the value of hypotenuse using the Pythagoras theorem. Next, find $\sin x$ and $\cos x$. Now, to find $\csc x$ and $\sec x$ we have to apply the formulas:
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \sec x=\dfrac{1}{\cos x} \\
\end{align}$
Complete step-by-step answer:
Here, we are given that $\tan x=\dfrac{1}{\sqrt{7}}$.
Now, we have to find the value of $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc
}^{2}}\theta +{{\sec }^{2}}\theta }$.
We know that,
$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$
We have the figure,
Here, from the figure we can say that,
Opposite side = AC
Adjacent side = AB
Hypotenuse = BC
$\Delta ABC$ is a right angled triangle. Hence, we can apply the Pythagoras theorem.
Now, by Pythagoras theorem we have,
$\begin{align}
& {{(Hypotenuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}} \\
\end{align}$
Here, we have,
$\tan x=\dfrac{AC}{AB}$
AC = 1
AB = $\sqrt{7}$
Now, we can write:
$\begin{align}
& {{(BC)}^{2}}={{1}^{2}}+{{\left( \sqrt{7} \right)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}=1+7 \\
& \Rightarrow {{(BC)}^{2}}=8 \\
\end{align}$
Next, by taking square root on both the sides we get,
$BC=\sqrt{8}$
We know that,
$\begin{align}
& \sin x=\dfrac{Opposite\text{ }side}{Hypotenuse} \\
& \Rightarrow \sin x=\dfrac{AC}{BC} \\
& \Rightarrow \sin x=\dfrac{1}{\sqrt{8}} \\
\end{align}$
We also have that,
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \Rightarrow \csc x=\dfrac{1}{\dfrac{1}{\sqrt{8}}} \\
& \Rightarrow \csc x=1\times \dfrac{\sqrt{8}}{1} \\
& \Rightarrow \csc x=\sqrt{8} \\
\end{align}$
Similarly, we have,
$\begin{align}
& \cos x=\dfrac{\text{Adjacent }side}{Hypotenuse} \\
& \Rightarrow \cos x=\dfrac{AB}{BC} \\
& \Rightarrow \cos x=\dfrac{\sqrt{7}}{\sqrt{8}} \\
\end{align}$
We also know that,
$\begin{align}
& \sec x=\dfrac{1}{\cos x} \\
& \Rightarrow \sec x=\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{8}}} \\
& \Rightarrow \sec x=1\times \dfrac{\sqrt{8}}{\sqrt{7}} \\
& \Rightarrow \sec x=\dfrac{\sqrt{8}}{\sqrt{7}} \\
\end{align}$
Next, we have to find $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$.
$\begin{align}
& \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}$
Now, by taking LCM we get,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{8\times 7-8}{7}}{\dfrac{8\times 7+8}{7}}$
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{56-7}{7}}{\dfrac{56+7}{7}}$
$\begin{align}
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{7}\times \dfrac{7}{64} \\
\end{align}$
Next, by cancellation we get:
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{64}$
Again by cancellation we obtain,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$
Therefore, we can say that when $\tan x=\dfrac{1}{\sqrt{7}}$ , then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$.
Hence, the correct answer for this question is option (d).
Note: Here, you should have an idea about the trigonometric ratios. To have a better understanding you have to construct a right triangle and mark the angle as x , it’s opposite side as 1 and it’s adjacent side as $\sqrt{7}$.
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \sec x=\dfrac{1}{\cos x} \\
\end{align}$
Complete step-by-step answer:
Here, we are given that $\tan x=\dfrac{1}{\sqrt{7}}$.
Now, we have to find the value of $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc
}^{2}}\theta +{{\sec }^{2}}\theta }$.
We know that,
$\tan x=\dfrac{opposite\text{ }side}{adjacent\text{ }side}$
We have the figure,

Here, from the figure we can say that,
Opposite side = AC
Adjacent side = AB
Hypotenuse = BC
$\Delta ABC$ is a right angled triangle. Hence, we can apply the Pythagoras theorem.
Now, by Pythagoras theorem we have,
$\begin{align}
& {{(Hypotenuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}} \\
\end{align}$
Here, we have,
$\tan x=\dfrac{AC}{AB}$
AC = 1
AB = $\sqrt{7}$
Now, we can write:
$\begin{align}
& {{(BC)}^{2}}={{1}^{2}}+{{\left( \sqrt{7} \right)}^{2}} \\
& \Rightarrow {{(BC)}^{2}}=1+7 \\
& \Rightarrow {{(BC)}^{2}}=8 \\
\end{align}$
Next, by taking square root on both the sides we get,
$BC=\sqrt{8}$
We know that,
$\begin{align}
& \sin x=\dfrac{Opposite\text{ }side}{Hypotenuse} \\
& \Rightarrow \sin x=\dfrac{AC}{BC} \\
& \Rightarrow \sin x=\dfrac{1}{\sqrt{8}} \\
\end{align}$
We also have that,
$\begin{align}
& \csc x=\dfrac{1}{\sin x} \\
& \Rightarrow \csc x=\dfrac{1}{\dfrac{1}{\sqrt{8}}} \\
& \Rightarrow \csc x=1\times \dfrac{\sqrt{8}}{1} \\
& \Rightarrow \csc x=\sqrt{8} \\
\end{align}$
Similarly, we have,
$\begin{align}
& \cos x=\dfrac{\text{Adjacent }side}{Hypotenuse} \\
& \Rightarrow \cos x=\dfrac{AB}{BC} \\
& \Rightarrow \cos x=\dfrac{\sqrt{7}}{\sqrt{8}} \\
\end{align}$
We also know that,
$\begin{align}
& \sec x=\dfrac{1}{\cos x} \\
& \Rightarrow \sec x=\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{8}}} \\
& \Rightarrow \sec x=1\times \dfrac{\sqrt{8}}{\sqrt{7}} \\
& \Rightarrow \sec x=\dfrac{\sqrt{8}}{\sqrt{7}} \\
\end{align}$
Next, we have to find $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }$.
$\begin{align}
& \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \dfrac{\sqrt{8}}{\sqrt{7}} \right)}^{2}}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}$
Now, by taking LCM we get,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{8\times 7-8}{7}}{\dfrac{8\times 7+8}{7}}$
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{56-7}{7}}{\dfrac{56+7}{7}}$
$\begin{align}
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& \Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{7}\times \dfrac{7}{64} \\
\end{align}$
Next, by cancellation we get:
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{48}{64}$
Again by cancellation we obtain,
$\Rightarrow \dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$
Therefore, we can say that when $\tan x=\dfrac{1}{\sqrt{7}}$ , then $\dfrac{{{\csc }^{2}}\theta -{{\sec }^{2}}\theta }{{{\csc }^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}$.
Hence, the correct answer for this question is option (d).
Note: Here, you should have an idea about the trigonometric ratios. To have a better understanding you have to construct a right triangle and mark the angle as x , it’s opposite side as 1 and it’s adjacent side as $\sqrt{7}$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Find the area of the minor segment of a circle of radius class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

State BPT theorem and prove it class 10 maths CBSE

What is the relation between mean median and mode a class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
