Answer
Verified
495k+ views
Hint: Use the formula ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$ and try differentiating it successively. Then multiply with the ‘x’ term and simplify it to get the desired result.
In the question we have to consider the following equation,
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( i \right)$
Now, let’s differentiate equation (i) with respect to ‘x’, we will get,
$n{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ on both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( ii \right)$
Now, let’s differentiate equation (ii) with respect to ‘x’ and using product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
$n{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right)x{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right){{x}^{2}}{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r}}}.........\left( iii \right)$
Now, in the equation (iii) we will substitute ‘x’ by $\left( \dfrac{p}{q} \right)$, so we get,
$\begin{align}
& n\left( \dfrac{p}{q} \right){{\left( 1+\dfrac{p}{q} \right)}^{n-1}}+n\left( n-1 \right){{\left( \dfrac{p}{q} \right)}^{2}}{{\left( 1+\dfrac{p}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
& \Rightarrow n\left( \dfrac{p}{q} \right){{\left( \dfrac{p+q}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{p+q}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
\end{align}$
In the question we were given that ‘p + q = 1’, so substituting this in above equation, we get
$n\left( \dfrac{p}{q} \right){{\left( \dfrac{1}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{1}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Combining the like terms, we get
$\Rightarrow n\dfrac{p}{{{q}^{n}}}+\dfrac{n\left( n-1 \right){{p}^{2}}}{{{q}^{n}}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Now, multiplying ${{q}^{n}}$on both side of the above equation we get,
$np+n\left( n-1 \right){{p}^{2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}$
We can also write like this
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np+n\left( n-1 \right){{p}^{2}}$
Combining the like terms, we get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( 1+np-p \right)$
We were given that ‘p + q = 1’, so, we can replace $\left( 1-p \right)$ by $q$, the above equation can be written as,
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( q+np \right)$
Opening the bracket,w e get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}$
Hence Proved
Note: In these type of questions, student generally go wrong while differentiating;
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$with respect to $x$.
Another approach of this problem is
\[\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}}\]
And convert this to the formula, ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$
In this way we can prove LHS is equal to RHS.
In the question we have to consider the following equation,
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( i \right)$
Now, let’s differentiate equation (i) with respect to ‘x’, we will get,
$n{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ on both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( ii \right)$
Now, let’s differentiate equation (ii) with respect to ‘x’ and using product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
$n{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right)x{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right){{x}^{2}}{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r}}}.........\left( iii \right)$
Now, in the equation (iii) we will substitute ‘x’ by $\left( \dfrac{p}{q} \right)$, so we get,
$\begin{align}
& n\left( \dfrac{p}{q} \right){{\left( 1+\dfrac{p}{q} \right)}^{n-1}}+n\left( n-1 \right){{\left( \dfrac{p}{q} \right)}^{2}}{{\left( 1+\dfrac{p}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
& \Rightarrow n\left( \dfrac{p}{q} \right){{\left( \dfrac{p+q}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{p+q}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
\end{align}$
In the question we were given that ‘p + q = 1’, so substituting this in above equation, we get
$n\left( \dfrac{p}{q} \right){{\left( \dfrac{1}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{1}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Combining the like terms, we get
$\Rightarrow n\dfrac{p}{{{q}^{n}}}+\dfrac{n\left( n-1 \right){{p}^{2}}}{{{q}^{n}}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Now, multiplying ${{q}^{n}}$on both side of the above equation we get,
$np+n\left( n-1 \right){{p}^{2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}$
We can also write like this
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np+n\left( n-1 \right){{p}^{2}}$
Combining the like terms, we get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( 1+np-p \right)$
We were given that ‘p + q = 1’, so, we can replace $\left( 1-p \right)$ by $q$, the above equation can be written as,
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( q+np \right)$
Opening the bracket,w e get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}$
Hence Proved
Note: In these type of questions, student generally go wrong while differentiating;
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$with respect to $x$.
Another approach of this problem is
\[\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}}\]
And convert this to the formula, ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$
In this way we can prove LHS is equal to RHS.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it