If p + q = 1 then show that $\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}}$.
Answer
363.9k+ views
Hint: Use the formula ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$ and try differentiating it successively. Then multiply with the ‘x’ term and simplify it to get the desired result.
In the question we have to consider the following equation,
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( i \right)$
Now, let’s differentiate equation (i) with respect to ‘x’, we will get,
$n{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ on both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( ii \right)$
Now, let’s differentiate equation (ii) with respect to ‘x’ and using product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
$n{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right)x{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right){{x}^{2}}{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r}}}.........\left( iii \right)$
Now, in the equation (iii) we will substitute ‘x’ by $\left( \dfrac{p}{q} \right)$, so we get,
$\begin{align}
& n\left( \dfrac{p}{q} \right){{\left( 1+\dfrac{p}{q} \right)}^{n-1}}+n\left( n-1 \right){{\left( \dfrac{p}{q} \right)}^{2}}{{\left( 1+\dfrac{p}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
& \Rightarrow n\left( \dfrac{p}{q} \right){{\left( \dfrac{p+q}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{p+q}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
\end{align}$
In the question we were given that ‘p + q = 1’, so substituting this in above equation, we get
$n\left( \dfrac{p}{q} \right){{\left( \dfrac{1}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{1}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Combining the like terms, we get
$\Rightarrow n\dfrac{p}{{{q}^{n}}}+\dfrac{n\left( n-1 \right){{p}^{2}}}{{{q}^{n}}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Now, multiplying ${{q}^{n}}$on both side of the above equation we get,
$np+n\left( n-1 \right){{p}^{2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}$
We can also write like this
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np+n\left( n-1 \right){{p}^{2}}$
Combining the like terms, we get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( 1+np-p \right)$
We were given that ‘p + q = 1’, so, we can replace $\left( 1-p \right)$ by $q$, the above equation can be written as,
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( q+np \right)$
Opening the bracket,w e get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}$
Hence Proved
Note: In these type of questions, student generally go wrong while differentiating;
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$with respect to $x$.
Another approach of this problem is
\[\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}}\]
And convert this to the formula, ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$
In this way we can prove LHS is equal to RHS.
In the question we have to consider the following equation,
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( i \right)$
Now, let’s differentiate equation (i) with respect to ‘x’, we will get,
$n{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ on both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( ii \right)$
Now, let’s differentiate equation (ii) with respect to ‘x’ and using product rule of differentiation, i.e., \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], we get
$n{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right)x{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r-1}}}$
Now multiply by ‘x’ both sides, we will get,
$nx{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right){{x}^{2}}{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r}}}.........\left( iii \right)$
Now, in the equation (iii) we will substitute ‘x’ by $\left( \dfrac{p}{q} \right)$, so we get,
$\begin{align}
& n\left( \dfrac{p}{q} \right){{\left( 1+\dfrac{p}{q} \right)}^{n-1}}+n\left( n-1 \right){{\left( \dfrac{p}{q} \right)}^{2}}{{\left( 1+\dfrac{p}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
& \Rightarrow n\left( \dfrac{p}{q} \right){{\left( \dfrac{p+q}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{p+q}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\
\end{align}$
In the question we were given that ‘p + q = 1’, so substituting this in above equation, we get
$n\left( \dfrac{p}{q} \right){{\left( \dfrac{1}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{1}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Combining the like terms, we get
$\Rightarrow n\dfrac{p}{{{q}^{n}}}+\dfrac{n\left( n-1 \right){{p}^{2}}}{{{q}^{n}}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}$
Now, multiplying ${{q}^{n}}$on both side of the above equation we get,
$np+n\left( n-1 \right){{p}^{2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}$
We can also write like this
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np+n\left( n-1 \right){{p}^{2}}$
Combining the like terms, we get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( 1+np-p \right)$
We were given that ‘p + q = 1’, so, we can replace $\left( 1-p \right)$ by $q$, the above equation can be written as,
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( q+np \right)$
Opening the bracket,w e get
$\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}$
Hence Proved
Note: In these type of questions, student generally go wrong while differentiating;
${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$with respect to $x$.
Another approach of this problem is
\[\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}}\]
And convert this to the formula, ${{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}$
In this way we can prove LHS is equal to RHS.
Last updated date: 28th Sep 2023
•
Total views: 363.9k
•
Views today: 10.63k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
