
If \[\overrightarrow{a}=4\widehat{i}-\widehat{j}+\widehat{k\text{ }}\text{and }\overrightarrow{b}=2\widehat{i}-2\widehat{j}+\widehat{k}\text{,}\]then find a unit vector parallel to the vector $\overrightarrow{a}+\overrightarrow{b}.$
Answer
576.9k+ views
Hint:In this question we have given two vectors and we have to find a unit vector which is parallel to sum of vectors. So, first of all we have to find the sum of the given vectors. As we know that If $\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}\text{ and }\overrightarrow{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}.$ then sum of vectors is define as $\overrightarrow{a}+\overrightarrow{b}=({{a}_{1}}+{{b}_{1}})\widehat{i}+({{a}_{2}}+{{b}_{2}})\widehat{j}+({{a}_{3}}+{{b}_{3}})\widehat{k}$. As we have to find the unit vector parallel to a vector so we have to divide the vector by its magnitude.
The magnitude of a vector $\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}\text{ }$is define as \[\overrightarrow{\left| a \right|}=\sqrt{{{\left( {{a}_{1}} \right)}^{2}}+{{\left( {{a}_{2}} \right)}^{2}}+{{\left( {{a}_{3}} \right)}^{2}}}\]
Unit vector parallel to the vector is define as \[\widehat{n}=\dfrac{\overrightarrow{a}}{\left| a \right|}\]
Complete step by step answer:
From question we have the value of
\[\overrightarrow{a}=4\widehat{i}-\widehat{j}+\widehat{k\text{ }}\text{and }\overrightarrow{b}=2\widehat{i}-2\widehat{j}+\widehat{k}\text{,}\]
As we know that if,
$\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}\text{ and }\overrightarrow{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}.$ then sum of vectors is define as $\overrightarrow{a}+\overrightarrow{b}=({{a}_{1}}+{{b}_{1}})\widehat{i}+({{a}_{2}}+{{b}_{2}})\widehat{j}+({{a}_{3}}+{{b}_{3}})\widehat{k}$
Here we have the value of
${{a}_{1}}=4,{{a}_{2}}=-1,{{a}_{3}}=1,{{b}_{1}}=2,{{b}_{2}}=-2,{{b}_{3}}=1$
So, we can write
$\overrightarrow{a}+\overrightarrow{b}=(4+2)\widehat{i}+(-1-2)\widehat{j}+(1+1)\widehat{k}$
Hence, we can write further
$\overrightarrow{a}+\overrightarrow{b}=6\widehat{i}-3\widehat{j}+2\widehat{k}$,
Now we have to find the value of magnitude of sum of vectors, so, we can write
$\left| \overrightarrow{a}+\overrightarrow{b} \right|=\left| 6\widehat{i}-3\widehat{j}+2\widehat{k} \right|$
As we know that
\[\overrightarrow{\left| a \right|}=\sqrt{{{\left( {{a}_{1}} \right)}^{2}}+{{\left( {{a}_{2}} \right)}^{2}}+{{\left( {{a}_{3}} \right)}^{2}}}\], so, we can write
\[\begin{align}
& \left| \overrightarrow{a}+\overrightarrow{b} \right|=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( 2 \right)}^{2}}} \\
& \left| \overrightarrow{a}+\overrightarrow{b} \right|=\sqrt{36+9+4} \\
& \left| \overrightarrow{a}+\overrightarrow{b} \right|=\sqrt{47} \\
\end{align}\]
Now we can find the value of unit vector which if parallel to vector sum of vectors that is $\overrightarrow{a}+\overrightarrow{b}$, by dividing it by magnitude of the sum of vectors that is \[\left| \overrightarrow{a}+\overrightarrow{b} \right|\], so we can write
\[\widehat{n}=\dfrac{\overrightarrow{a}+\overrightarrow{b}}{\left| \overrightarrow{a}+\overrightarrow{b} \right|}\]
Putting the values, we can write
\[\widehat{n}=\dfrac{6\widehat{i}-3\widehat{j}+2\widehat{k}}{\sqrt{47}}\]
We can write it as
\[\widehat{n}=\dfrac{6}{\sqrt{47}}\widehat{i}+\dfrac{-3}{\sqrt{47}}\widehat{j}+\dfrac{2}{\sqrt{47}}\widehat{k}\]
Note:
It is important to note that when we write a unit vector as $\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}\text{ }$it mean that $\left| \overrightarrow{a} \right|=1$so that we have ${{\left( {{a}_{1}} \right)}^{2}}+{{\left( {{a}_{2}} \right)}^{2}}+{{\left( {{a}_{3}} \right)}^{3}}=1$, also if we translate a vector parallel to itself its value does not change. The value of a vector only changes when either its magnitude changes or its direction or both.
The magnitude of a vector $\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}\text{ }$is define as \[\overrightarrow{\left| a \right|}=\sqrt{{{\left( {{a}_{1}} \right)}^{2}}+{{\left( {{a}_{2}} \right)}^{2}}+{{\left( {{a}_{3}} \right)}^{2}}}\]
Unit vector parallel to the vector is define as \[\widehat{n}=\dfrac{\overrightarrow{a}}{\left| a \right|}\]
Complete step by step answer:
From question we have the value of
\[\overrightarrow{a}=4\widehat{i}-\widehat{j}+\widehat{k\text{ }}\text{and }\overrightarrow{b}=2\widehat{i}-2\widehat{j}+\widehat{k}\text{,}\]
As we know that if,
$\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}\text{ and }\overrightarrow{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}.$ then sum of vectors is define as $\overrightarrow{a}+\overrightarrow{b}=({{a}_{1}}+{{b}_{1}})\widehat{i}+({{a}_{2}}+{{b}_{2}})\widehat{j}+({{a}_{3}}+{{b}_{3}})\widehat{k}$
Here we have the value of
${{a}_{1}}=4,{{a}_{2}}=-1,{{a}_{3}}=1,{{b}_{1}}=2,{{b}_{2}}=-2,{{b}_{3}}=1$
So, we can write
$\overrightarrow{a}+\overrightarrow{b}=(4+2)\widehat{i}+(-1-2)\widehat{j}+(1+1)\widehat{k}$
Hence, we can write further
$\overrightarrow{a}+\overrightarrow{b}=6\widehat{i}-3\widehat{j}+2\widehat{k}$,
Now we have to find the value of magnitude of sum of vectors, so, we can write
$\left| \overrightarrow{a}+\overrightarrow{b} \right|=\left| 6\widehat{i}-3\widehat{j}+2\widehat{k} \right|$
As we know that
\[\overrightarrow{\left| a \right|}=\sqrt{{{\left( {{a}_{1}} \right)}^{2}}+{{\left( {{a}_{2}} \right)}^{2}}+{{\left( {{a}_{3}} \right)}^{2}}}\], so, we can write
\[\begin{align}
& \left| \overrightarrow{a}+\overrightarrow{b} \right|=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( -3 \right)}^{2}}+{{\left( 2 \right)}^{2}}} \\
& \left| \overrightarrow{a}+\overrightarrow{b} \right|=\sqrt{36+9+4} \\
& \left| \overrightarrow{a}+\overrightarrow{b} \right|=\sqrt{47} \\
\end{align}\]
Now we can find the value of unit vector which if parallel to vector sum of vectors that is $\overrightarrow{a}+\overrightarrow{b}$, by dividing it by magnitude of the sum of vectors that is \[\left| \overrightarrow{a}+\overrightarrow{b} \right|\], so we can write
\[\widehat{n}=\dfrac{\overrightarrow{a}+\overrightarrow{b}}{\left| \overrightarrow{a}+\overrightarrow{b} \right|}\]
Putting the values, we can write
\[\widehat{n}=\dfrac{6\widehat{i}-3\widehat{j}+2\widehat{k}}{\sqrt{47}}\]
We can write it as
\[\widehat{n}=\dfrac{6}{\sqrt{47}}\widehat{i}+\dfrac{-3}{\sqrt{47}}\widehat{j}+\dfrac{2}{\sqrt{47}}\widehat{k}\]
Note:
It is important to note that when we write a unit vector as $\overrightarrow{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}\text{ }$it mean that $\left| \overrightarrow{a} \right|=1$so that we have ${{\left( {{a}_{1}} \right)}^{2}}+{{\left( {{a}_{2}} \right)}^{2}}+{{\left( {{a}_{3}} \right)}^{3}}=1$, also if we translate a vector parallel to itself its value does not change. The value of a vector only changes when either its magnitude changes or its direction or both.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

10 examples of evaporation in daily life with explanations

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

