
If $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, then prove that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Answer
583.2k+ views
Hint : To solve this question, we will use the concept of properties of scalar products of vectors. According to that, if \[\hat i,\hat j,\hat k\] are three mutually perpendicular unit vectors along the coordinates axes, then \[\hat i.\hat j = \hat j.\hat i = 0;\] \[\hat j.\hat k = \hat k.\hat j = 0;\] \[\hat k.\hat i = \hat i.\hat k = 0\].
Complete step by step solution:
A vector whose magnitude in unity, is called a unit vector. The unit vector in the direction of a vector $\overrightarrow a $ is denoted by $\hat a$. Thus, $\left| {\hat a} \right| = 1$.
Given that, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors.
We have to prove that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Proof :
As we know that if \[\hat i,\hat j,\hat k\] are three mutually perpendicular unit vectors along the coordinates axes, then \[\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0\].
Since, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, therefore
$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$. ……….. (i)
We know that, ${\left| {\overrightarrow x } \right|^2} = \overrightarrow x .\overrightarrow x $.
Therefore,
${\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$.
$
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\overrightarrow a .\overrightarrow b + 2\overrightarrow b .\overrightarrow c + 2\overrightarrow c .\overrightarrow a \\
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) \\
$
Putting the value of $\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a $ from equation (i), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2}$ ……….. (ii)
According to the question, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors and we know that the magnitude of a unit vector is always equal to 1.
Therefore,
${\left| {\overrightarrow a } \right|^2} = {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow c } \right|^2} = 1$ [ $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors ]
Putting this value in equation (ii), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 1 + 1 + 1$
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 3$
Taking square root both sides, we will get
$ \Rightarrow \left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Hence proved, If $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, then we can say that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Note : whenever we ask such types of questions, we have to remember the properties of the scalar product of vectors. First we have to find out what is given in the question then what we have to prove. After that we will use the properties on the given part. We will use the concept of unit vectors and mutually perpendicular vectors. Using this, we can easily prove the question and we will get the answer.
Complete step by step solution:
A vector whose magnitude in unity, is called a unit vector. The unit vector in the direction of a vector $\overrightarrow a $ is denoted by $\hat a$. Thus, $\left| {\hat a} \right| = 1$.
Given that, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors.
We have to prove that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Proof :
As we know that if \[\hat i,\hat j,\hat k\] are three mutually perpendicular unit vectors along the coordinates axes, then \[\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0\].
Since, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, therefore
$\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow c = \overrightarrow c .\overrightarrow a = 0$. ……….. (i)
We know that, ${\left| {\overrightarrow x } \right|^2} = \overrightarrow x .\overrightarrow x $.
Therefore,
${\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)$.
$
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\overrightarrow a .\overrightarrow b + 2\overrightarrow b .\overrightarrow c + 2\overrightarrow c .\overrightarrow a \\
\Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow b .\overrightarrow b + \overrightarrow c .\overrightarrow c + 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) \\
$
Putting the value of $\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a $ from equation (i), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2}$ ……….. (ii)
According to the question, $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors and we know that the magnitude of a unit vector is always equal to 1.
Therefore,
${\left| {\overrightarrow a } \right|^2} = {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow c } \right|^2} = 1$ [ $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are unit vectors ]
Putting this value in equation (ii), we will get
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 1 + 1 + 1$
$ \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 3$
Taking square root both sides, we will get
$ \Rightarrow \left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Hence proved, If $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are three mutually perpendicular unit vectors, then we can say that $\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = \sqrt 3 $.
Note : whenever we ask such types of questions, we have to remember the properties of the scalar product of vectors. First we have to find out what is given in the question then what we have to prove. After that we will use the properties on the given part. We will use the concept of unit vectors and mutually perpendicular vectors. Using this, we can easily prove the question and we will get the answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

