
If one root of \[5{x^2} + 13x + k = 0\] is the reciprocal of the other, then find the value of k.
Answer
505.5k+ views
Hint: Given equation is a quadratic equation. According to the given condition if one root is reciprocal or other then their product will be 1. So first we will find the roots and then we will use this hint. Find the roots as
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step-by-step answer:
Given equation is \[5{x^2} + 13x + k = 0\] of the form \[a{x^2} + bx + c = 0\].
Thus a=5 ,b=13 and c=k.
Now let’s find the roots
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Putting the values,
\[ \Rightarrow \dfrac{{ - 13 \pm \sqrt {{{\left( { - 13} \right)}^2} - 4 \times 5 \times k} }}{{2 \times 5}}\]
\[ \Rightarrow \dfrac{{ - 13 \pm \sqrt {169 - 20k} }}{{10}}\]
Now the two roots are \[ \Rightarrow \dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}}\] and \[\dfrac{{ - 13 - \sqrt {169 - 20k} }}{{10}}\]
Given that the product of one of them and reciprocal of other. So,
\[\dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}} = \dfrac{1}{{\dfrac{{ - 13 - \sqrt {169 - 20k} }}{{10}}}}\]
Now we will solve above equation
\[ \Rightarrow \dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}} = \dfrac{{10}}{{ - 13 - \sqrt {169 - 20k} }}\]
Now cross multiply
\[ \Rightarrow \dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}} \times \dfrac{{ - 13 - \sqrt {169 - 20k} }}{{10}} = 1\]
In numerator we observe that it is \[\left( {a + b} \right)\left( {a - b} \right)\] so we can use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow \dfrac{{{{\left( { - 13} \right)}^2} - {{\left( {\sqrt {169 - 20k} } \right)}^2}}}{{100}} = 1\]
\[ \Rightarrow \dfrac{{169 - \left( {169 - 20k} \right)}}{{100}} = 1\]
\[ \Rightarrow 169 - 169 + 20k = 100\]
169 is cancelled,
\[ \Rightarrow 20k = 100\]
Divide 100 by 20 we get,
\[ \Rightarrow k = \dfrac{{100}}{{20}}\]
\[ \Rightarrow k = 5\]
Thus the value of k is 5.
Note: Students first we will find the roots and then we will use the condition given. But students may get confused in the word reciprocal or they might forget to change the sign that is one root has plus sign \[\dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}}\] and other is having minus sign \[\dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}}\].
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step-by-step answer:
Given equation is \[5{x^2} + 13x + k = 0\] of the form \[a{x^2} + bx + c = 0\].
Thus a=5 ,b=13 and c=k.
Now let’s find the roots
\[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Putting the values,
\[ \Rightarrow \dfrac{{ - 13 \pm \sqrt {{{\left( { - 13} \right)}^2} - 4 \times 5 \times k} }}{{2 \times 5}}\]
\[ \Rightarrow \dfrac{{ - 13 \pm \sqrt {169 - 20k} }}{{10}}\]
Now the two roots are \[ \Rightarrow \dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}}\] and \[\dfrac{{ - 13 - \sqrt {169 - 20k} }}{{10}}\]
Given that the product of one of them and reciprocal of other. So,
\[\dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}} = \dfrac{1}{{\dfrac{{ - 13 - \sqrt {169 - 20k} }}{{10}}}}\]
Now we will solve above equation
\[ \Rightarrow \dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}} = \dfrac{{10}}{{ - 13 - \sqrt {169 - 20k} }}\]
Now cross multiply
\[ \Rightarrow \dfrac{{ - 13 + \sqrt {169 - 20k} }}{{10}} \times \dfrac{{ - 13 - \sqrt {169 - 20k} }}{{10}} = 1\]
In numerator we observe that it is \[\left( {a + b} \right)\left( {a - b} \right)\] so we can use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow \dfrac{{{{\left( { - 13} \right)}^2} - {{\left( {\sqrt {169 - 20k} } \right)}^2}}}{{100}} = 1\]
\[ \Rightarrow \dfrac{{169 - \left( {169 - 20k} \right)}}{{100}} = 1\]
\[ \Rightarrow 169 - 169 + 20k = 100\]
169 is cancelled,
\[ \Rightarrow 20k = 100\]
Divide 100 by 20 we get,
\[ \Rightarrow k = \dfrac{{100}}{{20}}\]
\[ \Rightarrow k = 5\]
Thus the value of k is 5.
Note: Students first we will find the roots and then we will use the condition given. But students may get confused in the word reciprocal or they might forget to change the sign that is one root has plus sign \[\dfrac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}}\] and other is having minus sign \[\dfrac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}}\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

How many faces edges vertices are there in the following class 9 maths CBSE
