
If \[n\] is the smallest number such that \[n+2n+3n+...+99n\] is a perfect square, then the number of digits in \[{{n}^{2}}\] is
a.\[1\]
b.\[2\]
c.\[3\]
d.None of these
Answer
604.5k+ views
Hint: To find the minimum value of \[n\] such that the value of sum \[n+2n+3n+...+99n\] is a perfect square, use the formula for the sum of \[k\] consecutive positive integers as \[\sum\limits_{i=1}^{k}{i}=\dfrac{k\left( k+1 \right)}{2}\] to find the sum of \[n+2n+3n+...+99n\]. Find the terms needed to be multiplied to make the given value of sum a perfect square. Square the calculated value of \[n\] and count the digits in the value of \[{{n}^{2}}\].
Complete step-by-step answer:
We have to find the smallest value of integer \[n\] such that the value of \[n+2n+3n+...+99n\] is a perfect square. Further, we have to calculate the digits in the number \[{{n}^{2}}\].
We can rewrite \[n+2n+3n+...+99n\] as \[n\left( 1+2+3+...+99 \right)\].
We have to find the value of \[1+2+3+...+99\].
We know that the formula for sum of \[k\] consecutive positive integers is \[\sum\limits_{i=1}^{k}{i}=\dfrac{k\left( k+1 \right)}{2}\].
Substituting \[k=99\], we have \[1+2+3+...+99=\dfrac{99\times 100}{2}=99\times 50\].
Thus, we have \[n+2n+3n+...+99n=n\left( 99\times 50 \right)\].
We observe that \[n\left( 99\times 50 \right)\] is not a perfect square. We have to make it a perfect square. Factorizing the term \[n\left( 99\times 50 \right)\], we have \[n\left( 99\times 50 \right)=n\left( 9\times 11\times 2\times 25 \right)\].
We observe that \[9\times 25\] is already a perfect square. Thus, the minimum value of \[n\] should be \[11\times 2\] to make \[n\left( 9\times 11\times 2\times 25 \right)\] a perfect square.
Thus, we have the value of \[n\] as \[n=11\times 2=22\].
So, the value of \[{{n}^{2}}\] will be \[{{n}^{2}}=484\].
Hence, the number of digits in \[{{n}^{2}}\] is \[3\], which is option (c).
Note: It’s necessary to use the formula for calculating the sum of \[k\] consecutive positive integers. Also, it’s necessary to keep in mind that the value of \[n\] has to be minimum to get a perfect square, otherwise, we will get an incorrect answer. A perfect square is a number obtained by multiplying a whole number by itself. The perfect square numbers must end with digits \[1,4,5,6,9\]. Perfect squares never end with digits \[2,3,7,8\].
.
Complete step-by-step answer:
We have to find the smallest value of integer \[n\] such that the value of \[n+2n+3n+...+99n\] is a perfect square. Further, we have to calculate the digits in the number \[{{n}^{2}}\].
We can rewrite \[n+2n+3n+...+99n\] as \[n\left( 1+2+3+...+99 \right)\].
We have to find the value of \[1+2+3+...+99\].
We know that the formula for sum of \[k\] consecutive positive integers is \[\sum\limits_{i=1}^{k}{i}=\dfrac{k\left( k+1 \right)}{2}\].
Substituting \[k=99\], we have \[1+2+3+...+99=\dfrac{99\times 100}{2}=99\times 50\].
Thus, we have \[n+2n+3n+...+99n=n\left( 99\times 50 \right)\].
We observe that \[n\left( 99\times 50 \right)\] is not a perfect square. We have to make it a perfect square. Factorizing the term \[n\left( 99\times 50 \right)\], we have \[n\left( 99\times 50 \right)=n\left( 9\times 11\times 2\times 25 \right)\].
We observe that \[9\times 25\] is already a perfect square. Thus, the minimum value of \[n\] should be \[11\times 2\] to make \[n\left( 9\times 11\times 2\times 25 \right)\] a perfect square.
Thus, we have the value of \[n\] as \[n=11\times 2=22\].
So, the value of \[{{n}^{2}}\] will be \[{{n}^{2}}=484\].
Hence, the number of digits in \[{{n}^{2}}\] is \[3\], which is option (c).
Note: It’s necessary to use the formula for calculating the sum of \[k\] consecutive positive integers. Also, it’s necessary to keep in mind that the value of \[n\] has to be minimum to get a perfect square, otherwise, we will get an incorrect answer. A perfect square is a number obtained by multiplying a whole number by itself. The perfect square numbers must end with digits \[1,4,5,6,9\]. Perfect squares never end with digits \[2,3,7,8\].
.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

