If \[{\log _a}x,\,\,{\log _b}x,\,\,{\log _c}x\,\] are in A.P. where x\[ \ne \]1, then show that \[{c^2} = {\left( {ac} \right)^{\left( {{{\log }_a}b} \right)}}\].
Answer
Verified
404.1k+ views
Hint: Here in the given question \[{\log _a}x,\,\,{\log _b}x,\,\,{\log _c}x\,\] are in Arithmetic progression, then the middle term will be the arithmetic mean of the other two terms. The terms given in A.P are in logarithmic form so while solving the problem we apply logarithm rules such as product rule, quotient rule and power rule.
Complete step-by-step solution:
The logarithm is the inverse function to exponent. The base b logarithm of a number is the exponent that we need to raise in order to get the number.
Given \[{\log _a}x,\,\,{\log _b}x,\,\,{\log _c}x\,\] are in arithmetic progression then the common difference between the consecutive terms will be equal
\[ \Rightarrow \]\[d = \,{\log _b}x - {\log _a}x\]-----------(1)
\[ \Rightarrow d = {\log _c}x\, - {\log _b}x\]-----------(2)
Equating (1) and (2) we get
\[ \Rightarrow {\log _b}x - {\log _a}x = {\log _c}x\, - {\log _b}x\]
On rearranging the terms
\[ \Rightarrow {\log _b}x\, + {\log _b}x = {\log _c}x\, + {\log _a}x\]
\[ \Rightarrow 2{\log _b}x = {\log _a}x + {\log _c}x\]
Using change of base rule, we get
\[ \Rightarrow \]\[2\left( {\dfrac{{\log x}}{{\log b}}} \right) = \dfrac{{\log x}}{{\log a}} + \dfrac{{\log x}}{{\log c}}\]
On taking log x common on both the sides we get
\[ \Rightarrow 2\left( {\log x} \right)\left( {\dfrac{1}{{\log b}}} \right) = \log x\left( {\dfrac{1}{{\log a}} + \dfrac{1}{{\log c}}} \right)\]
Cancelling log x on both the sides the equation reduces as following
\[ \Rightarrow 2\left( {\dfrac{1}{{\log b}}} \right) = \left( {\dfrac{1}{{\log a}} + \dfrac{1}{{\log c}}} \right)\]-------(3)
On simplifying equation (3) we get
\[ \Rightarrow \dfrac{2}{{\log b}} = \dfrac{{\log c + \log a}}{{\log a\log c}}\]-------(4)
On rearranging the equation (4)
\[ \Rightarrow 2\log c = \left( {\dfrac{{\log b}}{{\log a}}} \right)\left( {\log c + \log a} \right)\,\,\,\,\]--------(5)
Using product rule \[\log m + \log n = \log mn\] in equation (5)
\[ \Rightarrow 2\log c = \left( {{{\log }_a}b} \right)\left( {\log ac} \right)\]-------(6)
Using power rule \[n\log m = \log {m^n}\] in equation (6) we get
\[ \Rightarrow \log {c^2} = \log {\left( {ac} \right)^{\left( {{{\log }_a}b} \right)}}\]-------(7)
Now cancelling log on both the sides we get
\[ \Rightarrow {c^2} = {\left( {ac} \right)^{\left( {{{\log }_a}b} \right)}}\]
Hence proved
Note: Arithmetic progression is a sequence of numbers in which each successive term is a sum of its preceding term and a fixed term. We use \[{T_n} = a + \left( {n - 1} \right)d\]to find any term \[{T_n}\] in the given arithmetic progression, where ‘a’ is the first term of the A.P, nth position of the term, d is the common difference. Similarly \[{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)\] is used to find the sum of n terms of the A.P.
Complete step-by-step solution:
The logarithm is the inverse function to exponent. The base b logarithm of a number is the exponent that we need to raise in order to get the number.
Given \[{\log _a}x,\,\,{\log _b}x,\,\,{\log _c}x\,\] are in arithmetic progression then the common difference between the consecutive terms will be equal
\[ \Rightarrow \]\[d = \,{\log _b}x - {\log _a}x\]-----------(1)
\[ \Rightarrow d = {\log _c}x\, - {\log _b}x\]-----------(2)
Equating (1) and (2) we get
\[ \Rightarrow {\log _b}x - {\log _a}x = {\log _c}x\, - {\log _b}x\]
On rearranging the terms
\[ \Rightarrow {\log _b}x\, + {\log _b}x = {\log _c}x\, + {\log _a}x\]
\[ \Rightarrow 2{\log _b}x = {\log _a}x + {\log _c}x\]
Using change of base rule, we get
\[ \Rightarrow \]\[2\left( {\dfrac{{\log x}}{{\log b}}} \right) = \dfrac{{\log x}}{{\log a}} + \dfrac{{\log x}}{{\log c}}\]
On taking log x common on both the sides we get
\[ \Rightarrow 2\left( {\log x} \right)\left( {\dfrac{1}{{\log b}}} \right) = \log x\left( {\dfrac{1}{{\log a}} + \dfrac{1}{{\log c}}} \right)\]
Cancelling log x on both the sides the equation reduces as following
\[ \Rightarrow 2\left( {\dfrac{1}{{\log b}}} \right) = \left( {\dfrac{1}{{\log a}} + \dfrac{1}{{\log c}}} \right)\]-------(3)
On simplifying equation (3) we get
\[ \Rightarrow \dfrac{2}{{\log b}} = \dfrac{{\log c + \log a}}{{\log a\log c}}\]-------(4)
On rearranging the equation (4)
\[ \Rightarrow 2\log c = \left( {\dfrac{{\log b}}{{\log a}}} \right)\left( {\log c + \log a} \right)\,\,\,\,\]--------(5)
Using product rule \[\log m + \log n = \log mn\] in equation (5)
\[ \Rightarrow 2\log c = \left( {{{\log }_a}b} \right)\left( {\log ac} \right)\]-------(6)
Using power rule \[n\log m = \log {m^n}\] in equation (6) we get
\[ \Rightarrow \log {c^2} = \log {\left( {ac} \right)^{\left( {{{\log }_a}b} \right)}}\]-------(7)
Now cancelling log on both the sides we get
\[ \Rightarrow {c^2} = {\left( {ac} \right)^{\left( {{{\log }_a}b} \right)}}\]
Hence proved
Note: Arithmetic progression is a sequence of numbers in which each successive term is a sum of its preceding term and a fixed term. We use \[{T_n} = a + \left( {n - 1} \right)d\]to find any term \[{T_n}\] in the given arithmetic progression, where ‘a’ is the first term of the A.P, nth position of the term, d is the common difference. Similarly \[{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)\] is used to find the sum of n terms of the A.P.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE