
If $\left| \begin{matrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|=\left( a+b+c \right){{\left( x+a+b+c \right)}^{2}},x\ne 0$ and $a+b+c\ne 0$ then $x$ is equal to
(a) $-\left( a+b+c \right)$
(b) $2\left( a+b+c \right)$
(c) $abc$
(d) $-2\left( a+b+c \right)$
Answer
572.1k+ views
Hint: To find the value of $x$ we will find the determinant , we will first apply some row and column operation like ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}},\text{ }{{C}_{2}}\to {{C}_{2}}-{{C}_{1}}\text{ }and\text{ }{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$ to simplify then we will expand the determinant to find the determinant. At last we will compare our Determinant with the one which was given to us originally to find the value of $x$ .
Complete step-by-step answer:
We are given that the Determinant of one matrix is given as $\left( a+b+c \right){{\left( x+a+b+c \right)}^{2}}$ we have been asked to find the value of $x$ .
So, we will first find the determinant of the matrix.
As we know row operators has no effect on Determinant, so we use row operation on the
Determinant to Simplify a bit.
Now, we have the determinant which is given as
$\left| \begin{matrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|$
Now we will add all the rows.
That is ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , so we will get,
$\left| \begin{matrix}
a+b+c & a+b+c & a+b+c \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|$
Now $a+b+c$ is common in the first row, so we will take it out from Row $1$ , so we get,
$\left( a+b+c \right)\left| \begin{matrix}
1 & 1 & 1 \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|$
Now we will subtract column 2 from column 1 and also we will subtract column 3 from column 1, that is, we will apply,
${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}\text{ }and\text{ }{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$
So we will get as follows.
\[\left( a+b+c \right)\left| \begin{matrix}
1 & 0 & 0 \\
2b & -\left( a+b+c \right) & 0 \\
2c & 0 & -c-a-b \\
\end{matrix} \right|\]
Now we will expand along Row $1$ , so we will get
\[=\left( a+b+c \right)\left[ 1\left( -\left( a+b+c \right)\left( -c-a-b \right) \right) \right]\]
Now, on simplifying the above expression, we will get,
\[=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}\]
So we get,
$\left| \begin{matrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}$
On comparing this determinant with the one given to us we will get,
$\left( a+b+c \right){{\left( x+a+b+c \right)}^{2}}=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}$
On cancelling the like terms on both the sides, we will get,
${{\left( x+a+b+c \right)}^{2}}={{\left( a+b+c \right)}^{2}}$
$\begin{align}
& \Rightarrow \left( x+a+b+c \right)=a+b+c \\
& \text{ }or \\
& x+a+b+c=-\left( a+b+c \right) \\
\end{align}$
If we consider,
$x+a+b+c=a+b+c$
Then we can write,
$x=a+b+c-\left( a+b+c \right)$
$x=0$
But $x\ne 0$ so this is not correct.
So we will consider,
\[\begin{align}
& x+a+b+c=-\left( a+b+c \right) \\
& \Rightarrow x=-\left( a+b+c \right)-\left( a+b+c \right) \\
& \text{ }x=-2\left( a+b+c \right) \\
\end{align}\]
So we will get a value of x, which is not equal to 0.
Therefore, the correct option is \[-2\left( a+b+c \right)\] option(d).
So, the correct answer is “Option d”.
Note: Remember while comparing the two Determinant we cannot simplify like,
$\left( a+b+c \right){{\left( x+a+b+c \right)}^{2}}=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}$
$\Rightarrow {{\left( x+a+b+c \right)}^{2}}={{\left( a+b+c \right)}^{2}}$
Cancelling the squares on both the sides, we get,
$\Rightarrow x+a+b+c=a+b+c$
After solving we will get,
$x=0$ which is an incorrect option.
So while comparing squares we have to take both values of it.
That is,
${{\left( x+a+b+c \right)}^{2}}={{\left( a+b+c \right)}^{2}}$
And this will give us,
$\begin{align}
& \Rightarrow \left( x+a+b+c \right)=a+b+c \\
& \text{ }or \\
& x+a+b+c=-\left( a+b+c \right) \\
\end{align}$
Complete step-by-step answer:
We are given that the Determinant of one matrix is given as $\left( a+b+c \right){{\left( x+a+b+c \right)}^{2}}$ we have been asked to find the value of $x$ .
So, we will first find the determinant of the matrix.
As we know row operators has no effect on Determinant, so we use row operation on the
Determinant to Simplify a bit.
Now, we have the determinant which is given as
$\left| \begin{matrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|$
Now we will add all the rows.
That is ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , so we will get,
$\left| \begin{matrix}
a+b+c & a+b+c & a+b+c \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|$
Now $a+b+c$ is common in the first row, so we will take it out from Row $1$ , so we get,
$\left( a+b+c \right)\left| \begin{matrix}
1 & 1 & 1 \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|$
Now we will subtract column 2 from column 1 and also we will subtract column 3 from column 1, that is, we will apply,
${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}\text{ }and\text{ }{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$
So we will get as follows.
\[\left( a+b+c \right)\left| \begin{matrix}
1 & 0 & 0 \\
2b & -\left( a+b+c \right) & 0 \\
2c & 0 & -c-a-b \\
\end{matrix} \right|\]
Now we will expand along Row $1$ , so we will get
\[=\left( a+b+c \right)\left[ 1\left( -\left( a+b+c \right)\left( -c-a-b \right) \right) \right]\]
Now, on simplifying the above expression, we will get,
\[=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}\]
So we get,
$\left| \begin{matrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b \\
\end{matrix} \right|=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}$
On comparing this determinant with the one given to us we will get,
$\left( a+b+c \right){{\left( x+a+b+c \right)}^{2}}=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}$
On cancelling the like terms on both the sides, we will get,
${{\left( x+a+b+c \right)}^{2}}={{\left( a+b+c \right)}^{2}}$
$\begin{align}
& \Rightarrow \left( x+a+b+c \right)=a+b+c \\
& \text{ }or \\
& x+a+b+c=-\left( a+b+c \right) \\
\end{align}$
If we consider,
$x+a+b+c=a+b+c$
Then we can write,
$x=a+b+c-\left( a+b+c \right)$
$x=0$
But $x\ne 0$ so this is not correct.
So we will consider,
\[\begin{align}
& x+a+b+c=-\left( a+b+c \right) \\
& \Rightarrow x=-\left( a+b+c \right)-\left( a+b+c \right) \\
& \text{ }x=-2\left( a+b+c \right) \\
\end{align}\]
So we will get a value of x, which is not equal to 0.
Therefore, the correct option is \[-2\left( a+b+c \right)\] option(d).
So, the correct answer is “Option d”.
Note: Remember while comparing the two Determinant we cannot simplify like,
$\left( a+b+c \right){{\left( x+a+b+c \right)}^{2}}=\left( a+b+c \right){{\left( a+b+c \right)}^{2}}$
$\Rightarrow {{\left( x+a+b+c \right)}^{2}}={{\left( a+b+c \right)}^{2}}$
Cancelling the squares on both the sides, we get,
$\Rightarrow x+a+b+c=a+b+c$
After solving we will get,
$x=0$ which is an incorrect option.
So while comparing squares we have to take both values of it.
That is,
${{\left( x+a+b+c \right)}^{2}}={{\left( a+b+c \right)}^{2}}$
And this will give us,
$\begin{align}
& \Rightarrow \left( x+a+b+c \right)=a+b+c \\
& \text{ }or \\
& x+a+b+c=-\left( a+b+c \right) \\
\end{align}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

