
If \[i=\sqrt{-1}\] then \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\]is equal to
(a) $1-i\sqrt{3}$
(b) $-1+i\sqrt{3}$
(c) $4\sqrt{3}i$
(d) $-i\sqrt{3}$
Answer
517.2k+ views
Hint: To solve this problem, we should know that concept of cube roots of unity. We know that according to cube roots of unity as 1, \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\]which also satisfies \[{{w}^{2}}+w+1=0\] and \[{{w}^{3}}=1\]. We assume the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\]is equal to A. We then substitute \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\] in A. Now by further simplification, we will get the value of A.
Complete step-by-step answer:
Let us assume the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to A.
We know that according to cube roots of unity. If \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\], then \[{{w}^{2}}+w+1=0\] and \[{{w}^{3}}=1\]. So, let us substitute \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\] in A.
\[\Rightarrow A=4+5{{w}^{334}}-3{{\left( -{{w}^{2}} \right)}^{365}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{730}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{729}}.w\].
\[\Rightarrow A=4+5{{\left( {{w}^{3}} \right)}^{111}}.w+3{{\left( {{w}^{3}} \right)}^{243}}.w\].
We know that \[{{w}^{3}}=1\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+5w+3w\].
\[\Rightarrow A=4+8w\].
We know that \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+8\left( \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right)\].
\[\Rightarrow A=4+\left( -4+4\sqrt{3} \right)\].
\[\Rightarrow A=4\sqrt{3}i\].
Hence, option C is correct.
So, the correct answer is “Option C”.
Note: Alternatively, we can solve this problem as shown below:
From the above question, it is clear that we have to find the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
First of all, let us find the value of \[{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}\].
We know that \[\cos \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{-1}{2}\] and \[\sin \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ cis\left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\left( \pi -\dfrac{\pi }{3} \right) \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 334\pi -\dfrac{334\pi }{3} \right)+i\sin \left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=\cos \theta \] and \[\sin \left( n\pi -\theta \right)=-\sin \theta \] where n is even.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( \dfrac{334\pi }{3} \right)-i\sin \left( \dfrac{334\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 111\pi +\dfrac{\pi }{3} \right)-i\sin \left( 111\pi +\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]........(1)\].
Now we should find the value of \[{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
We know that \[\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\] and \[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ cis\left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( \dfrac{365\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \cos \left( 121\pi +\dfrac{2\pi }{3} \right)+i\sin \left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ -\cos \left( \dfrac{2\pi }{3} \right)-i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=-\cos \theta \] and \[\sin \left( n\pi -\theta \right)=\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right]......(2)\].
Let us assume
\[I=4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}......(3)\].
Now we will substitute equation (1) and equation (2) in equation (3), then we get
\[\Rightarrow I=4-\dfrac{5}{2}+i\left( \dfrac{5\sqrt{3}}{2} \right)-\dfrac{3}{2}+i\left( \dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4-\dfrac{5}{2}-\dfrac{3}{2}+i\left( \dfrac{5\sqrt{3}}{2}+\dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=0+i\left( \dfrac{8\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4\sqrt{3}i......(4)\].
From equation (4), it is clear that the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to \[4\sqrt{3}i\].
Hence, Option c is correct.
Complete step-by-step answer:
Let us assume the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to A.
We know that according to cube roots of unity. If \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\], then \[{{w}^{2}}+w+1=0\] and \[{{w}^{3}}=1\]. So, let us substitute \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\] in A.
\[\Rightarrow A=4+5{{w}^{334}}-3{{\left( -{{w}^{2}} \right)}^{365}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{730}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{729}}.w\].
\[\Rightarrow A=4+5{{\left( {{w}^{3}} \right)}^{111}}.w+3{{\left( {{w}^{3}} \right)}^{243}}.w\].
We know that \[{{w}^{3}}=1\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+5w+3w\].
\[\Rightarrow A=4+8w\].
We know that \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+8\left( \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right)\].
\[\Rightarrow A=4+\left( -4+4\sqrt{3} \right)\].
\[\Rightarrow A=4\sqrt{3}i\].
Hence, option C is correct.
So, the correct answer is “Option C”.
Note: Alternatively, we can solve this problem as shown below:
From the above question, it is clear that we have to find the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
First of all, let us find the value of \[{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}\].
We know that \[\cos \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{-1}{2}\] and \[\sin \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ cis\left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\left( \pi -\dfrac{\pi }{3} \right) \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 334\pi -\dfrac{334\pi }{3} \right)+i\sin \left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=\cos \theta \] and \[\sin \left( n\pi -\theta \right)=-\sin \theta \] where n is even.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( \dfrac{334\pi }{3} \right)-i\sin \left( \dfrac{334\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 111\pi +\dfrac{\pi }{3} \right)-i\sin \left( 111\pi +\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]........(1)\].
Now we should find the value of \[{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
We know that \[\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\] and \[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ cis\left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( \dfrac{365\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \cos \left( 121\pi +\dfrac{2\pi }{3} \right)+i\sin \left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ -\cos \left( \dfrac{2\pi }{3} \right)-i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=-\cos \theta \] and \[\sin \left( n\pi -\theta \right)=\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right]......(2)\].
Let us assume
\[I=4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}......(3)\].
Now we will substitute equation (1) and equation (2) in equation (3), then we get
\[\Rightarrow I=4-\dfrac{5}{2}+i\left( \dfrac{5\sqrt{3}}{2} \right)-\dfrac{3}{2}+i\left( \dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4-\dfrac{5}{2}-\dfrac{3}{2}+i\left( \dfrac{5\sqrt{3}}{2}+\dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=0+i\left( \dfrac{8\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4\sqrt{3}i......(4)\].
From equation (4), it is clear that the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to \[4\sqrt{3}i\].
Hence, Option c is correct.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
