
If \[i=\sqrt{-1}\] then \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\]is equal to
(a) $1-i\sqrt{3}$
(b) $-1+i\sqrt{3}$
(c) $4\sqrt{3}i$
(d) $-i\sqrt{3}$
Answer
563.7k+ views
Hint: To solve this problem, we should know that concept of cube roots of unity. We know that according to cube roots of unity as 1, \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\]which also satisfies \[{{w}^{2}}+w+1=0\] and \[{{w}^{3}}=1\]. We assume the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\]is equal to A. We then substitute \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\] in A. Now by further simplification, we will get the value of A.
Complete step-by-step answer:
Let us assume the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to A.
We know that according to cube roots of unity. If \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\], then \[{{w}^{2}}+w+1=0\] and \[{{w}^{3}}=1\]. So, let us substitute \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\] in A.
\[\Rightarrow A=4+5{{w}^{334}}-3{{\left( -{{w}^{2}} \right)}^{365}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{730}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{729}}.w\].
\[\Rightarrow A=4+5{{\left( {{w}^{3}} \right)}^{111}}.w+3{{\left( {{w}^{3}} \right)}^{243}}.w\].
We know that \[{{w}^{3}}=1\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+5w+3w\].
\[\Rightarrow A=4+8w\].
We know that \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+8\left( \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right)\].
\[\Rightarrow A=4+\left( -4+4\sqrt{3} \right)\].
\[\Rightarrow A=4\sqrt{3}i\].
Hence, option C is correct.
So, the correct answer is “Option C”.
Note: Alternatively, we can solve this problem as shown below:
From the above question, it is clear that we have to find the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
First of all, let us find the value of \[{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}\].
We know that \[\cos \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{-1}{2}\] and \[\sin \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ cis\left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\left( \pi -\dfrac{\pi }{3} \right) \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 334\pi -\dfrac{334\pi }{3} \right)+i\sin \left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=\cos \theta \] and \[\sin \left( n\pi -\theta \right)=-\sin \theta \] where n is even.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( \dfrac{334\pi }{3} \right)-i\sin \left( \dfrac{334\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 111\pi +\dfrac{\pi }{3} \right)-i\sin \left( 111\pi +\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]........(1)\].
Now we should find the value of \[{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
We know that \[\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\] and \[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ cis\left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( \dfrac{365\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \cos \left( 121\pi +\dfrac{2\pi }{3} \right)+i\sin \left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ -\cos \left( \dfrac{2\pi }{3} \right)-i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=-\cos \theta \] and \[\sin \left( n\pi -\theta \right)=\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right]......(2)\].
Let us assume
\[I=4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}......(3)\].
Now we will substitute equation (1) and equation (2) in equation (3), then we get
\[\Rightarrow I=4-\dfrac{5}{2}+i\left( \dfrac{5\sqrt{3}}{2} \right)-\dfrac{3}{2}+i\left( \dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4-\dfrac{5}{2}-\dfrac{3}{2}+i\left( \dfrac{5\sqrt{3}}{2}+\dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=0+i\left( \dfrac{8\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4\sqrt{3}i......(4)\].
From equation (4), it is clear that the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to \[4\sqrt{3}i\].
Hence, Option c is correct.
Complete step-by-step answer:
Let us assume the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to A.
We know that according to cube roots of unity. If \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\], then \[{{w}^{2}}+w+1=0\] and \[{{w}^{3}}=1\]. So, let us substitute \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\] and \[{{w}^{2}}=\dfrac{-1}{2}-i\dfrac{\sqrt{3}}{2}\] in A.
\[\Rightarrow A=4+5{{w}^{334}}-3{{\left( -{{w}^{2}} \right)}^{365}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{730}}\].
\[\Rightarrow A=4+5{{w}^{333}}.w+3{{w}^{729}}.w\].
\[\Rightarrow A=4+5{{\left( {{w}^{3}} \right)}^{111}}.w+3{{\left( {{w}^{3}} \right)}^{243}}.w\].
We know that \[{{w}^{3}}=1\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+5w+3w\].
\[\Rightarrow A=4+8w\].
We know that \[w=\dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2}\]. Now we will substitute this in the value of A.
\[\Rightarrow A=4+8\left( \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right)\].
\[\Rightarrow A=4+\left( -4+4\sqrt{3} \right)\].
\[\Rightarrow A=4\sqrt{3}i\].
Hence, option C is correct.
So, the correct answer is “Option C”.
Note: Alternatively, we can solve this problem as shown below:
From the above question, it is clear that we have to find the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
First of all, let us find the value of \[{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}\].
We know that \[\cos \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{-1}{2}\] and \[\sin \left( \pi -\dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}={{\left[ cis\left( \pi -\dfrac{\pi }{3} \right) \right]}^{334}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\left( \pi -\dfrac{\pi }{3} \right) \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ cis\left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 334\pi -\dfrac{334\pi }{3} \right)+i\sin \left( 334\pi -\dfrac{334\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=\cos \theta \] and \[\sin \left( n\pi -\theta \right)=-\sin \theta \] where n is even.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( \dfrac{334\pi }{3} \right)-i\sin \left( \dfrac{334\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \cos \left( 111\pi +\dfrac{\pi }{3} \right)-i\sin \left( 111\pi +\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}=\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]........(1)\].
Now we should find the value of \[{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\].
We know that \[\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\] and \[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}={{\left[ cis\left( \dfrac{\pi }{3} \right) \right]}^{365}}\].
We know that \[ci{{s}^{n}}\theta =cisn\theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( \dfrac{365\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ cis\left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[cis\theta =\cos \theta +i\sin \theta \].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \cos \left( 121\pi +\dfrac{2\pi }{3} \right)+i\sin \left( 121\pi +\dfrac{2\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] and \[\sin \left( n\pi +\theta \right)=-\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ -\cos \left( \dfrac{2\pi }{3} \right)-i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \right]\].
\[\Rightarrow {{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ \cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \left( n\pi -\theta \right)=-\cos \theta \] and \[\sin \left( n\pi -\theta \right)=\sin \theta \] where n is odd.
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right]\].
We know that \[\cos \dfrac{\pi }{3}=\dfrac{1}{2}\] and \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=-\left[ -\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]\].
\[\Rightarrow {{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}=\left[ \dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right]......(2)\].
Let us assume
\[I=4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}......(3)\].
Now we will substitute equation (1) and equation (2) in equation (3), then we get
\[\Rightarrow I=4-\dfrac{5}{2}+i\left( \dfrac{5\sqrt{3}}{2} \right)-\dfrac{3}{2}+i\left( \dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4-\dfrac{5}{2}-\dfrac{3}{2}+i\left( \dfrac{5\sqrt{3}}{2}+\dfrac{3\sqrt{3}}{2} \right)\].
\[\Rightarrow I=0+i\left( \dfrac{8\sqrt{3}}{2} \right)\].
\[\Rightarrow I=4\sqrt{3}i......(4)\].
From equation (4), it is clear that the value of \[4+5{{\left[ \dfrac{-1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{334}}-3{{\left[ \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right]}^{365}}\] is equal to \[4\sqrt{3}i\].
Hence, Option c is correct.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

