
If $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cot x}{\cot x+\csc x}dx}=m\left( \pi +n \right)$, then ‘mn’ is equal to?
(a) -1
(b) 1
(c) $\dfrac{1}{2}$
(d) $-\dfrac{1}{2}$
Answer
617.4k+ views
Hint: Don’t use any property related with definite integral. Convert the given relation in ‘cot x’ and ‘csc x’ to ‘sin x’ and ‘cos x’. Now, try to simplify it further to get the value of the integral and hence by comparison, find ‘mn’.
Complete step by step answer:
Let $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cot x}{\cot x+\csc x}dx}$ ………………… (i)
We can convert the above integral in terms of ‘sin’ and ‘cos’ by using the relation,
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\text{,csc}\theta \text{=}\dfrac{1}{\sin \theta }\]
Hence, equation(i) can be written as
\[\begin{align}
& I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\cos x}{\sin x}+\dfrac{1}{\sin x}}}dx \\
& I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\cos x+1}{\sin x}}}dx \\
\end{align}\]
Cancelling the like terms, we get
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{1+\cos x}}dx\]……… (ii)
Now, we can use identity of \[\cos 2\theta \] in terms of \[\tan \theta \] which is given as,
\[\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\] ……………….. (iii)
Hence, equation (ii) can be written as
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}{1+\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}dx}\]
Now, simplifying the above relation, we get
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}\times \dfrac{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\dfrac{x}{2}+1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}dx\]
Or
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{2}\times \dfrac{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}dx\]
Now, replace \[1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)\] by \[{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]by the trigonometric identity \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \], we get
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{2}\times \dfrac{{{\sec }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}dx}\]………………………. (iv)
Now, we can suppose $\tan \dfrac{x}{2}$ as ‘t’ and differentiate it to get relation in ‘dt’ and ‘dx’ in following way:
$\tan \dfrac{x}{2}=t,$
$\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx=dt$
${{\sec }^{2}}\dfrac{x}{2}dx=2dt$
Now, we can change limits of the integral given in equation (iv), by using relation $t=\tan \left( \dfrac{x}{2} \right)$
Upper limit w.r.t$x=\dfrac{\pi }{2}$
Upper limit w.r.t $t=\tan \dfrac{\pi }{4}=1$
Lower limit w.r.t x=0
Lower limit w.r.t $t=\tan \left( \dfrac{0}{2} \right)=0$
Hence, integral ‘I’ w.r.t dt can be written as
$I=\int\limits_{0}^{1}{\dfrac{1-{{t}^{2}}}{2\left( 1+{{t}^{2}} \right)}\times 2dt}$
$I=\int\limits_{0}^{1}{\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}dt}$
Now adding and subtracting ‘1’ in the numerator of above equation, we get
$I=\int\limits_{0}^{1}{\dfrac{1-{{t}^{2}}-1+1}{1+{{t}^{2}}}dt}$
$I=\int\limits_{0}^{1}{\dfrac{2-\left( 1+{{t}^{2}} \right)}{1+{{t}^{2}}}dt}$
$I=\int\limits_{0}^{1}{\dfrac{2}{1+{{t}^{2}}}dt}-\int\limits_{0}^{1}{1dt}$
$I=2\int\limits_{0}^{1}{\dfrac{1}{1+{{t}^{2}}}dt}-\int\limits_{0}^{1}{1dt}$
Now, we can use relation, $\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}}dx=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)$ and$\int{1dx=x}$.
Hence, I can be given as
\[I=2\left. {{\tan }^{-1}}t \right|_{0}^{1}-\left. t \right|_{0}^{1}\]
Applying the limits, we get
$I=2\left( {{\tan }^{-1}}1-{{\tan }^{-1}}0 \right)-\left( 1-0 \right)$
Now, we know values of ${{\tan }^{-1}}1$and ${{\tan }^{-1}}0$ which are given as $\dfrac{\pi }{4}$and 0. Hence, we get
$I=2\left( \dfrac{\pi }{4}-0 \right)-1$
$I=\dfrac{\pi }{2}-1=\dfrac{1}{2}\left( \pi -2 \right)$
The integral in the problem is given as $m\left( \pi +n \right)$. Hence, by comparing the calculated and given integral, we get values of m and n as
$m=\dfrac{1}{2}$ and $n=-2$
Hence,
$mn=-2\times \dfrac{1}{2}=-1$.
Therefore, option (a) is the correct answer.
Note: Another approach for solving the integral would be that we can multiply the given integral by $\csc x-\cot x$ in numerator and denominator both. Hence, integral becomes
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cot x}{\csc x+\cot x}\times \left( \dfrac{\csc x-\cot x}{\csc x-\cot x} \right)}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cot x\csc x-{{\cot }^{2}}x \right)dx}$
Where ${{\csc }^{2}}x-{{\cot }^{2}}x=1$
Now, integral it further by changing the expression in terms of ‘sin x’ and ‘cos x’.
Complete step by step answer:
Let $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cot x}{\cot x+\csc x}dx}$ ………………… (i)
We can convert the above integral in terms of ‘sin’ and ‘cos’ by using the relation,
\[\cot \theta =\dfrac{\cos \theta }{\sin \theta }\text{,csc}\theta \text{=}\dfrac{1}{\sin \theta }\]
Hence, equation(i) can be written as
\[\begin{align}
& I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\cos x}{\sin x}+\dfrac{1}{\sin x}}}dx \\
& I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\cos x+1}{\sin x}}}dx \\
\end{align}\]
Cancelling the like terms, we get
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{1+\cos x}}dx\]……… (ii)
Now, we can use identity of \[\cos 2\theta \] in terms of \[\tan \theta \] which is given as,
\[\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }\] ……………….. (iii)
Hence, equation (ii) can be written as
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}{1+\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}dx}\]
Now, simplifying the above relation, we get
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}\times \dfrac{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\dfrac{x}{2}+1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}dx\]
Or
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{2}\times \dfrac{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}}dx\]
Now, replace \[1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)\] by \[{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]by the trigonometric identity \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \], we get
\[I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}{2}\times \dfrac{{{\sec }^{2}}\left( \dfrac{x}{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2} \right)}dx}\]………………………. (iv)
Now, we can suppose $\tan \dfrac{x}{2}$ as ‘t’ and differentiate it to get relation in ‘dt’ and ‘dx’ in following way:
$\tan \dfrac{x}{2}=t,$
$\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx=dt$
${{\sec }^{2}}\dfrac{x}{2}dx=2dt$
Now, we can change limits of the integral given in equation (iv), by using relation $t=\tan \left( \dfrac{x}{2} \right)$
Upper limit w.r.t$x=\dfrac{\pi }{2}$
Upper limit w.r.t $t=\tan \dfrac{\pi }{4}=1$
Lower limit w.r.t x=0
Lower limit w.r.t $t=\tan \left( \dfrac{0}{2} \right)=0$
Hence, integral ‘I’ w.r.t dt can be written as
$I=\int\limits_{0}^{1}{\dfrac{1-{{t}^{2}}}{2\left( 1+{{t}^{2}} \right)}\times 2dt}$
$I=\int\limits_{0}^{1}{\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}dt}$
Now adding and subtracting ‘1’ in the numerator of above equation, we get
$I=\int\limits_{0}^{1}{\dfrac{1-{{t}^{2}}-1+1}{1+{{t}^{2}}}dt}$
$I=\int\limits_{0}^{1}{\dfrac{2-\left( 1+{{t}^{2}} \right)}{1+{{t}^{2}}}dt}$
$I=\int\limits_{0}^{1}{\dfrac{2}{1+{{t}^{2}}}dt}-\int\limits_{0}^{1}{1dt}$
$I=2\int\limits_{0}^{1}{\dfrac{1}{1+{{t}^{2}}}dt}-\int\limits_{0}^{1}{1dt}$
Now, we can use relation, $\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}}dx=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)$ and$\int{1dx=x}$.
Hence, I can be given as
\[I=2\left. {{\tan }^{-1}}t \right|_{0}^{1}-\left. t \right|_{0}^{1}\]
Applying the limits, we get
$I=2\left( {{\tan }^{-1}}1-{{\tan }^{-1}}0 \right)-\left( 1-0 \right)$
Now, we know values of ${{\tan }^{-1}}1$and ${{\tan }^{-1}}0$ which are given as $\dfrac{\pi }{4}$and 0. Hence, we get
$I=2\left( \dfrac{\pi }{4}-0 \right)-1$
$I=\dfrac{\pi }{2}-1=\dfrac{1}{2}\left( \pi -2 \right)$
The integral in the problem is given as $m\left( \pi +n \right)$. Hence, by comparing the calculated and given integral, we get values of m and n as
$m=\dfrac{1}{2}$ and $n=-2$
Hence,
$mn=-2\times \dfrac{1}{2}=-1$.
Therefore, option (a) is the correct answer.
Note: Another approach for solving the integral would be that we can multiply the given integral by $\csc x-\cot x$ in numerator and denominator both. Hence, integral becomes
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cot x}{\csc x+\cot x}\times \left( \dfrac{\csc x-\cot x}{\csc x-\cot x} \right)}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \cot x\csc x-{{\cot }^{2}}x \right)dx}$
Where ${{\csc }^{2}}x-{{\cot }^{2}}x=1$
Now, integral it further by changing the expression in terms of ‘sin x’ and ‘cos x’.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

