
If in a triangle ABC $\angle C=60{}^\circ $, then prove that $\dfrac{1}{a+c}+\dfrac{1}{b+c}=\dfrac{3}{a+b+c}$
Answer
597.6k+ views
Hint: Apply cosine rule on angle C, i.e. use $\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}$. Use the fact that $\cos 60{}^\circ =\dfrac{1}{2}$. Simplify the resulting expression to get the result.
Complete step-by-step answer:
Here as per usual notation, we have a = BC, b = AC and c = AB.
We know that in any triangle ABC, we have $\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}$ (cosine rule)
Applying cosine rule on triangle ABC, we get
$\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$
Since $C=60{}^\circ $, we have $\cos C=\dfrac{1}{2}$
Hence, we have
$\dfrac{1}{2}=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}$
Multiplying by 2 on both sides, we get
$\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{ab}=1$
Adding and subtracting 2ab in numerator, we get
$\begin{align}
& \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}+2ab-2ab}{ab}=1 \\
& \Rightarrow \dfrac{{{a}^{2}}+2ab+{{b}^{2}}-{{c}^{2}}-2ab}{ab}=1 \\
\end{align}$
We know that ${{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}$
Using the above identity, we get
$\dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}-2ab}{ab}=1$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
$\begin{align}
& \dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}}{ab}-\dfrac{2ab}{ab}=1 \\
& \Rightarrow \dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}}{ab}-2=1 \\
& \Rightarrow \dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}}{ab}=3 \\
\end{align}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using the above identity, we get
$\dfrac{\left( a+b+c \right)\left( a+b-c \right)}{ab}=3$
Dividing both sides by a+b+c, we get
$\dfrac{a+b-c}{ab}=\dfrac{3}{a+b+c}$
Also, we have
$\begin{align}
& \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}=2 \\
& \Rightarrow \\
\end{align}$
Now, we have
$\dfrac{a+b-c}{ab}=\dfrac{3}{a+b+c}$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we have
$\begin{align}
& \dfrac{a}{ab}+\dfrac{b}{ab}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b}+\dfrac{1}{a}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
\end{align}$
In the first fraction on LHS, multiply the numerator and denominator by b+c and in the second fraction on LHS, multiply the numerator and denominator by a+c, we get
$\begin{align}
& \dfrac{b+c}{b\left( b+c \right)}+\dfrac{a+c}{a\left( a+c \right)}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b+c}\left[ \dfrac{b+c}{b} \right]+\dfrac{1}{a+c}\left[ \dfrac{a+c}{a} \right]-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
\end{align}$
Now we know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Applying the above identity, we get
$\begin{align}
& \dfrac{1}{b+c}\left[ 1+\dfrac{c}{b} \right]+\dfrac{1}{a+c}\left[ 1+\dfrac{c}{a} \right]-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{c}{a\left( a+c \right)}+\dfrac{c}{b\left( b+c \right)}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{c}{ab\left( a+c \right)\left( b+c \right)}\left[ b\left( b+c \right)+a\left( a+c \right)-\left( a+c \right)\left( b+c \right) \right]=\dfrac{3}{a+b+c} \\
\end{align}$
Expanding the terms, we get
$\begin{align}
& \dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{c}{ab\left( a+c \right)\left( b+c \right)}\left( {{b}^{2}}+bc+{{a}^{2}}+ac-ab-ac-bc-{{c}^{2}} \right)=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{c}{ab\left( b+c \right)\left( a+c \right)}\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}}-ab \right)=\dfrac{3}{a+b+c} \\
\end{align}$
We know that
${{a}^{2}}+{{b}^{2}}-{{c}^{2}}-ab=0$ (proved above)
Hence we have
$\begin{align}
& \dfrac{1}{a+c}+\dfrac{1}{b+c}-0=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{a+c}+\dfrac{1}{b+c}=\dfrac{3}{a+b+c} \\
\end{align}$
Note: In the questions of the above type, we need to understand which formula to apply and which not. Cosine rule is generally applied when on the basis of a known angle we want to find the relations between the sides of the triangle as is the case above.
[2] Alternatively, we can solve the above question by showing that $\dfrac{1}{a+c}+\dfrac{1}{b+c}=\dfrac{3}{a+b+c}\Leftrightarrow {{a}^{2}}+{{b}^{2}}-{{c}^{2}}=ab$
Multiply both sides of the equation by (a+b)(b+c)(a+b+c) and simplify to prove the above result.
Complete step-by-step answer:
Here as per usual notation, we have a = BC, b = AC and c = AB.
We know that in any triangle ABC, we have $\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}$ (cosine rule)
Applying cosine rule on triangle ABC, we get
$\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$
Since $C=60{}^\circ $, we have $\cos C=\dfrac{1}{2}$
Hence, we have
$\dfrac{1}{2}=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}$
Multiplying by 2 on both sides, we get
$\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{ab}=1$
Adding and subtracting 2ab in numerator, we get
$\begin{align}
& \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}+2ab-2ab}{ab}=1 \\
& \Rightarrow \dfrac{{{a}^{2}}+2ab+{{b}^{2}}-{{c}^{2}}-2ab}{ab}=1 \\
\end{align}$
We know that ${{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}$
Using the above identity, we get
$\dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}-2ab}{ab}=1$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
$\begin{align}
& \dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}}{ab}-\dfrac{2ab}{ab}=1 \\
& \Rightarrow \dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}}{ab}-2=1 \\
& \Rightarrow \dfrac{{{\left( a+b \right)}^{2}}-{{c}^{2}}}{ab}=3 \\
\end{align}$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using the above identity, we get
$\dfrac{\left( a+b+c \right)\left( a+b-c \right)}{ab}=3$
Dividing both sides by a+b+c, we get
$\dfrac{a+b-c}{ab}=\dfrac{3}{a+b+c}$
Also, we have
$\begin{align}
& \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}=2 \\
& \Rightarrow \\
\end{align}$
Now, we have
$\dfrac{a+b-c}{ab}=\dfrac{3}{a+b+c}$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we have
$\begin{align}
& \dfrac{a}{ab}+\dfrac{b}{ab}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b}+\dfrac{1}{a}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
\end{align}$
In the first fraction on LHS, multiply the numerator and denominator by b+c and in the second fraction on LHS, multiply the numerator and denominator by a+c, we get
$\begin{align}
& \dfrac{b+c}{b\left( b+c \right)}+\dfrac{a+c}{a\left( a+c \right)}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b+c}\left[ \dfrac{b+c}{b} \right]+\dfrac{1}{a+c}\left[ \dfrac{a+c}{a} \right]-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
\end{align}$
Now we know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Applying the above identity, we get
$\begin{align}
& \dfrac{1}{b+c}\left[ 1+\dfrac{c}{b} \right]+\dfrac{1}{a+c}\left[ 1+\dfrac{c}{a} \right]-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{c}{a\left( a+c \right)}+\dfrac{c}{b\left( b+c \right)}-\dfrac{c}{ab}=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{c}{ab\left( a+c \right)\left( b+c \right)}\left[ b\left( b+c \right)+a\left( a+c \right)-\left( a+c \right)\left( b+c \right) \right]=\dfrac{3}{a+b+c} \\
\end{align}$
Expanding the terms, we get
$\begin{align}
& \dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{c}{ab\left( a+c \right)\left( b+c \right)}\left( {{b}^{2}}+bc+{{a}^{2}}+ac-ab-ac-bc-{{c}^{2}} \right)=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{c}{ab\left( b+c \right)\left( a+c \right)}\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}}-ab \right)=\dfrac{3}{a+b+c} \\
\end{align}$
We know that
${{a}^{2}}+{{b}^{2}}-{{c}^{2}}-ab=0$ (proved above)
Hence we have
$\begin{align}
& \dfrac{1}{a+c}+\dfrac{1}{b+c}-0=\dfrac{3}{a+b+c} \\
& \Rightarrow \dfrac{1}{a+c}+\dfrac{1}{b+c}=\dfrac{3}{a+b+c} \\
\end{align}$
Note: In the questions of the above type, we need to understand which formula to apply and which not. Cosine rule is generally applied when on the basis of a known angle we want to find the relations between the sides of the triangle as is the case above.
[2] Alternatively, we can solve the above question by showing that $\dfrac{1}{a+c}+\dfrac{1}{b+c}=\dfrac{3}{a+b+c}\Leftrightarrow {{a}^{2}}+{{b}^{2}}-{{c}^{2}}=ab$
Multiply both sides of the equation by (a+b)(b+c)(a+b+c) and simplify to prove the above result.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

What are porins class 11 biology CBSE

