
If \[\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x\], then find the value of \[ x = \]
A. \[4\theta \]
B. \[2\theta \]
C. \[\theta \]
D. \[3\theta \]
Answer
558k+ views
Hint: We solve the fraction in the left hand side of the equation and write the term in function of cosine. Use the expansion of \[\sin 3\theta \] and \[\sin 2\theta \] to expand the terms in the fraction. Cancel common terms from fraction and again take common terms from possible terms in the fraction and solve using the identity \[{\sin ^2}\theta = 1 - {\cos ^2}\theta \]. Use the formula \[(a - b)(a + b) = {a^2} - {b^2}\] to break and group the terms in the numerator. Apply inverse trigonometric of the same function and calculate the value of ‘x’.
* \[\sin 2\theta = 2\sin \theta \cos \theta \]
* \[\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \]
*\[{\sin ^2}\theta = 1 - {\cos ^2}\theta \]
*\[(a - b)(a + b) = {a^2} - {b^2}\]
Complete step-by-step solution:
We are given that \[\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x\]................… (1)
We solve the left hand side of the equation
\[ \Rightarrow \]LHS\[ = \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }}\]
We can write \[{\sin ^2}(2\theta ) = {\left( {\sin 2\theta } \right)^2}\]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta {{(\sin 2\theta )}^2}}}{{\sin \theta + \sin 2\theta \cos \theta }}\]
Use the substitution of \[\sin 2\theta = 2\sin \theta \cos \theta \] in both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta {{(2\sin \theta \cos \theta )}^2}}}{{\sin \theta + \left( {2\sin \theta \cos \theta } \right)\cos \theta }}\]
Square the terms inside the bracket in the numerator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta (4{{\sin }^2}\theta {{\cos }^2}\theta )}}{{\sin \theta + \left( {2\sin \theta \cos \theta } \right)\cos \theta }}\]
Multiply the terms inside the bracket with the term outside the bracket in both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - 4{{\sin }^3}\theta {{\cos }^2}\theta }}{{\sin \theta + 2\sin \theta {{\cos }^2}\theta }}\]
Substitute the value of \[\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \] in the numerator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3\sin \theta - 4{{\sin }^3}\theta - 4{{\sin }^3}\theta {{\cos }^2}\theta }}{{\sin \theta + 2\sin \theta {{\cos }^2}\theta }}\]
Take \[\sin \theta \] common from all the terms in both numerator and denominator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin \theta \left( {3 - 4{{\sin }^2}\theta - 4{{\sin }^2}\theta {{\cos }^2}\theta } \right)}}{{\sin \theta \left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Cancel the common factor i.e.\[\sin \theta \] from both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\left( {3 - 4{{\sin }^2}\theta - 4{{\sin }^2}\theta {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Now we take\[ - 4{\sin ^2}\theta \]common from the two terms in numerator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4{{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Substitute the value of \[{\sin ^2}\theta = 1 - {\cos ^2}\theta \]in numerator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Since we know the identity\[(a - b)(a + b) = {a^2} - {b^2}\], we can write \[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {({\cos ^2}\theta )^2}\]i.e. \[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {\cos ^4}\theta \]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4\left( {1 - {{\cos }^4}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Multiply the terms inside the bracket with the term outside the bracket in numerator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4 + 4{{\cos }^4}\theta }}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{4{{\cos }^4}\theta - 1}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Using the identity \[(a - b)(a + b) = {a^2} - {b^2}\] we can write \[4{\cos ^4}\theta - 1 = \left( {2{{\cos }^2}\theta - 1} \right)\left( {2{{\cos }^2}\theta + 1} \right)\]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\left( {2{{\cos }^2}\theta - 1} \right)\left( {2{{\cos }^2}\theta + 1} \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Cancel the common factor i.e. \[\left( {1 + 2{{\cos }^2}\theta } \right)\] from both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \left( {2{{\cos }^2}\theta - 1} \right)\]
Use the identity \[\left( {2{{\cos }^2}\theta - 1} \right) = \cos 2\theta \] in RHS
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos 2\theta \]...............… (2)
Since we are given from equation (1)\[\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x\]
Equate the values of fraction from equations (1) and (2)
\[ \Rightarrow \cos x = \cos 2\theta \]
Apply inverse cosine function on both sides of the equation
\[ \Rightarrow {\cos ^{ - 1}}\left( {\cos x} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right)\]
Cancel inverse function by the same function
\[ \Rightarrow x = 2\theta \]
\[\therefore \]The value of x is \[2\theta \]
\[\therefore \]Option B is correct.
Note: Many students get confused while grouping the factors\[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)\]and write their multiplication using the identity as \[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {\left( {{{\cos }^2}\theta } \right)^2}\]. Keep in mind we can write \[{\cos ^2}\theta = {\left( {\cos \theta } \right)^2}\]and we know \[{\left( {{m^p}} \right)^q} = {m^{p \times q}}\]so the value of\[{\left( {{{\cos }^2}\theta } \right)^2} = {\left( {{{\left( {\cos \theta } \right)}^2}} \right)^2} = {\cos ^4}\theta \]. Also, many students write the fraction in terms of sine function which is wrong as then we will not be able to apply the inverse of cosine on both sides.
* \[\sin 2\theta = 2\sin \theta \cos \theta \]
* \[\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \]
*\[{\sin ^2}\theta = 1 - {\cos ^2}\theta \]
*\[(a - b)(a + b) = {a^2} - {b^2}\]
Complete step-by-step solution:
We are given that \[\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x\]................… (1)
We solve the left hand side of the equation
\[ \Rightarrow \]LHS\[ = \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }}\]
We can write \[{\sin ^2}(2\theta ) = {\left( {\sin 2\theta } \right)^2}\]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta {{(\sin 2\theta )}^2}}}{{\sin \theta + \sin 2\theta \cos \theta }}\]
Use the substitution of \[\sin 2\theta = 2\sin \theta \cos \theta \] in both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta {{(2\sin \theta \cos \theta )}^2}}}{{\sin \theta + \left( {2\sin \theta \cos \theta } \right)\cos \theta }}\]
Square the terms inside the bracket in the numerator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta (4{{\sin }^2}\theta {{\cos }^2}\theta )}}{{\sin \theta + \left( {2\sin \theta \cos \theta } \right)\cos \theta }}\]
Multiply the terms inside the bracket with the term outside the bracket in both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - 4{{\sin }^3}\theta {{\cos }^2}\theta }}{{\sin \theta + 2\sin \theta {{\cos }^2}\theta }}\]
Substitute the value of \[\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \] in the numerator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3\sin \theta - 4{{\sin }^3}\theta - 4{{\sin }^3}\theta {{\cos }^2}\theta }}{{\sin \theta + 2\sin \theta {{\cos }^2}\theta }}\]
Take \[\sin \theta \] common from all the terms in both numerator and denominator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin \theta \left( {3 - 4{{\sin }^2}\theta - 4{{\sin }^2}\theta {{\cos }^2}\theta } \right)}}{{\sin \theta \left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Cancel the common factor i.e.\[\sin \theta \] from both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\left( {3 - 4{{\sin }^2}\theta - 4{{\sin }^2}\theta {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Now we take\[ - 4{\sin ^2}\theta \]common from the two terms in numerator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4{{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Substitute the value of \[{\sin ^2}\theta = 1 - {\cos ^2}\theta \]in numerator of the fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Since we know the identity\[(a - b)(a + b) = {a^2} - {b^2}\], we can write \[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {({\cos ^2}\theta )^2}\]i.e. \[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {\cos ^4}\theta \]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4\left( {1 - {{\cos }^4}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Multiply the terms inside the bracket with the term outside the bracket in numerator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4 + 4{{\cos }^4}\theta }}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{4{{\cos }^4}\theta - 1}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Using the identity \[(a - b)(a + b) = {a^2} - {b^2}\] we can write \[4{\cos ^4}\theta - 1 = \left( {2{{\cos }^2}\theta - 1} \right)\left( {2{{\cos }^2}\theta + 1} \right)\]
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\left( {2{{\cos }^2}\theta - 1} \right)\left( {2{{\cos }^2}\theta + 1} \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}\]
Cancel the common factor i.e. \[\left( {1 + 2{{\cos }^2}\theta } \right)\] from both numerator and denominator of the given fraction
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \left( {2{{\cos }^2}\theta - 1} \right)\]
Use the identity \[\left( {2{{\cos }^2}\theta - 1} \right) = \cos 2\theta \] in RHS
\[ \Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos 2\theta \]...............… (2)
Since we are given from equation (1)\[\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x\]
Equate the values of fraction from equations (1) and (2)
\[ \Rightarrow \cos x = \cos 2\theta \]
Apply inverse cosine function on both sides of the equation
\[ \Rightarrow {\cos ^{ - 1}}\left( {\cos x} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right)\]
Cancel inverse function by the same function
\[ \Rightarrow x = 2\theta \]
\[\therefore \]The value of x is \[2\theta \]
\[\therefore \]Option B is correct.
Note: Many students get confused while grouping the factors\[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)\]and write their multiplication using the identity as \[\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {\left( {{{\cos }^2}\theta } \right)^2}\]. Keep in mind we can write \[{\cos ^2}\theta = {\left( {\cos \theta } \right)^2}\]and we know \[{\left( {{m^p}} \right)^q} = {m^{p \times q}}\]so the value of\[{\left( {{{\cos }^2}\theta } \right)^2} = {\left( {{{\left( {\cos \theta } \right)}^2}} \right)^2} = {\cos ^4}\theta \]. Also, many students write the fraction in terms of sine function which is wrong as then we will not be able to apply the inverse of cosine on both sides.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

