
If $\text{cosecx}-\text{sinx}={{a}^{3}}$ and $\sec x-\cos x={{b}^{3}}$, prove that ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ = 1.
Answer
596.7k+ views
Hint:To solve this question, it is important to be aware about the basic concepts related to trigonometric equations. In this question, we will first try to convert cosec(x) into sin(x) and sec(x) into cos(x). We would then simplify the terms as per ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ term to get the necessary answer.
Complete step-by-step answer:
The first step of the problem would be to simplify $\text{cscx}-\text{sinx}={{a}^{3}}$ further. Thus, first we convert cosec(x) into sin(x). Then, we get,
$\begin{align}
& \dfrac{1}{\sin x}-\sin x={{a}^{3}} \\
& \dfrac{1-{{\sin }^{2}}x}{\sin x}={{a}^{3}} \\
& \dfrac{{{\cos }^{2}}x}{\sin x}={{a}^{3}} \\
\end{align}$
Now, we similarly repeat this for the term $\sec x-\cos x={{b}^{3}}$, this time we convert sec(x) into cos(x). Now, we get,
$\begin{align}
& \dfrac{1}{\cos x}-\cos x={{b}^{3}} \\
& \dfrac{1-{{\cos }^{2}}x}{\cos x}={{b}^{3}} \\
& \dfrac{{{\sin }^{2}}x}{\cos x}={{b}^{3}} \\
\end{align}$
Now, we multiply the obtained results, thus, we get,
$\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)={{a}^{3}}{{b}^{3}}$
cos(x)sin(x) = ${{a}^{3}}{{b}^{3}}$ -- (1)
Now, we observe that we want to evaluate ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$. Thus, we first find ${{a}^{2}}{{b}^{2}}$.
Thus, in equation (1), we raise LHS and RHS to the power of $\dfrac{2}{3}$. Doing so, we get,
${{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}={{a}^{2}}{{b}^{2}}$ -- (2)
Next, we proceed to find ${{a}^{2}}+{{b}^{2}}$. For this, we make use of the fact that
$\begin{align}
& {{a}^{3}}=\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right) \\
& {{b}^{3}}=\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right) \\
\end{align}$
Thus, \[\begin{align}
& {{a}^{2}}={{\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right) \\
& {{b}^{2}}={{\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right) \\
\end{align}\]
Now, we add these results, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right)+\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x{{\cos }^{\dfrac{2}{3}}}x+{{\sin }^{\dfrac{4}{3}}}x{{\sin }^{\dfrac{2}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
Now, we use the property that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Thus, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{1}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$ -- (3)
Now, we combine the results from (2) and (3). Thus, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=\left( \dfrac{{{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)\]
Since, numerator and the denominator are the same, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=1\]
Hence, LHS=RHS, we have proved the above problem.
Note: In this problem, before jumping straight away to evaluate the term ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$, first simplifying the expression in hand helps in solving the problem with ease. One can also try to solve${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ term directly without simplifying $\text{cosec x}-\sin x={{a}^{3}}$ and $\sec x-\cos x={{b}^{3}}$ terms, however, this would be an extremely tedious task and it may also happen that problem is unsolvable by this method.
Complete step-by-step answer:
The first step of the problem would be to simplify $\text{cscx}-\text{sinx}={{a}^{3}}$ further. Thus, first we convert cosec(x) into sin(x). Then, we get,
$\begin{align}
& \dfrac{1}{\sin x}-\sin x={{a}^{3}} \\
& \dfrac{1-{{\sin }^{2}}x}{\sin x}={{a}^{3}} \\
& \dfrac{{{\cos }^{2}}x}{\sin x}={{a}^{3}} \\
\end{align}$
Now, we similarly repeat this for the term $\sec x-\cos x={{b}^{3}}$, this time we convert sec(x) into cos(x). Now, we get,
$\begin{align}
& \dfrac{1}{\cos x}-\cos x={{b}^{3}} \\
& \dfrac{1-{{\cos }^{2}}x}{\cos x}={{b}^{3}} \\
& \dfrac{{{\sin }^{2}}x}{\cos x}={{b}^{3}} \\
\end{align}$
Now, we multiply the obtained results, thus, we get,
$\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)={{a}^{3}}{{b}^{3}}$
cos(x)sin(x) = ${{a}^{3}}{{b}^{3}}$ -- (1)
Now, we observe that we want to evaluate ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$. Thus, we first find ${{a}^{2}}{{b}^{2}}$.
Thus, in equation (1), we raise LHS and RHS to the power of $\dfrac{2}{3}$. Doing so, we get,
${{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}={{a}^{2}}{{b}^{2}}$ -- (2)
Next, we proceed to find ${{a}^{2}}+{{b}^{2}}$. For this, we make use of the fact that
$\begin{align}
& {{a}^{3}}=\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right) \\
& {{b}^{3}}=\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right) \\
\end{align}$
Thus, \[\begin{align}
& {{a}^{2}}={{\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right) \\
& {{b}^{2}}={{\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right) \\
\end{align}\]
Now, we add these results, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right)+\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x{{\cos }^{\dfrac{2}{3}}}x+{{\sin }^{\dfrac{4}{3}}}x{{\sin }^{\dfrac{2}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
Now, we use the property that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Thus, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{1}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$ -- (3)
Now, we combine the results from (2) and (3). Thus, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=\left( \dfrac{{{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)\]
Since, numerator and the denominator are the same, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=1\]
Hence, LHS=RHS, we have proved the above problem.
Note: In this problem, before jumping straight away to evaluate the term ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$, first simplifying the expression in hand helps in solving the problem with ease. One can also try to solve${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ term directly without simplifying $\text{cosec x}-\sin x={{a}^{3}}$ and $\sec x-\cos x={{b}^{3}}$ terms, however, this would be an extremely tedious task and it may also happen that problem is unsolvable by this method.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

