
If $\text{cosecx}-\text{sinx}={{a}^{3}}$ and $\sec x-\cos x={{b}^{3}}$, prove that ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ = 1.
Answer
611.4k+ views
Hint:To solve this question, it is important to be aware about the basic concepts related to trigonometric equations. In this question, we will first try to convert cosec(x) into sin(x) and sec(x) into cos(x). We would then simplify the terms as per ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ term to get the necessary answer.
Complete step-by-step answer:
The first step of the problem would be to simplify $\text{cscx}-\text{sinx}={{a}^{3}}$ further. Thus, first we convert cosec(x) into sin(x). Then, we get,
$\begin{align}
& \dfrac{1}{\sin x}-\sin x={{a}^{3}} \\
& \dfrac{1-{{\sin }^{2}}x}{\sin x}={{a}^{3}} \\
& \dfrac{{{\cos }^{2}}x}{\sin x}={{a}^{3}} \\
\end{align}$
Now, we similarly repeat this for the term $\sec x-\cos x={{b}^{3}}$, this time we convert sec(x) into cos(x). Now, we get,
$\begin{align}
& \dfrac{1}{\cos x}-\cos x={{b}^{3}} \\
& \dfrac{1-{{\cos }^{2}}x}{\cos x}={{b}^{3}} \\
& \dfrac{{{\sin }^{2}}x}{\cos x}={{b}^{3}} \\
\end{align}$
Now, we multiply the obtained results, thus, we get,
$\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)={{a}^{3}}{{b}^{3}}$
cos(x)sin(x) = ${{a}^{3}}{{b}^{3}}$ -- (1)
Now, we observe that we want to evaluate ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$. Thus, we first find ${{a}^{2}}{{b}^{2}}$.
Thus, in equation (1), we raise LHS and RHS to the power of $\dfrac{2}{3}$. Doing so, we get,
${{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}={{a}^{2}}{{b}^{2}}$ -- (2)
Next, we proceed to find ${{a}^{2}}+{{b}^{2}}$. For this, we make use of the fact that
$\begin{align}
& {{a}^{3}}=\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right) \\
& {{b}^{3}}=\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right) \\
\end{align}$
Thus, \[\begin{align}
& {{a}^{2}}={{\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right) \\
& {{b}^{2}}={{\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right) \\
\end{align}\]
Now, we add these results, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right)+\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x{{\cos }^{\dfrac{2}{3}}}x+{{\sin }^{\dfrac{4}{3}}}x{{\sin }^{\dfrac{2}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
Now, we use the property that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Thus, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{1}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$ -- (3)
Now, we combine the results from (2) and (3). Thus, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=\left( \dfrac{{{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)\]
Since, numerator and the denominator are the same, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=1\]
Hence, LHS=RHS, we have proved the above problem.
Note: In this problem, before jumping straight away to evaluate the term ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$, first simplifying the expression in hand helps in solving the problem with ease. One can also try to solve${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ term directly without simplifying $\text{cosec x}-\sin x={{a}^{3}}$ and $\sec x-\cos x={{b}^{3}}$ terms, however, this would be an extremely tedious task and it may also happen that problem is unsolvable by this method.
Complete step-by-step answer:
The first step of the problem would be to simplify $\text{cscx}-\text{sinx}={{a}^{3}}$ further. Thus, first we convert cosec(x) into sin(x). Then, we get,
$\begin{align}
& \dfrac{1}{\sin x}-\sin x={{a}^{3}} \\
& \dfrac{1-{{\sin }^{2}}x}{\sin x}={{a}^{3}} \\
& \dfrac{{{\cos }^{2}}x}{\sin x}={{a}^{3}} \\
\end{align}$
Now, we similarly repeat this for the term $\sec x-\cos x={{b}^{3}}$, this time we convert sec(x) into cos(x). Now, we get,
$\begin{align}
& \dfrac{1}{\cos x}-\cos x={{b}^{3}} \\
& \dfrac{1-{{\cos }^{2}}x}{\cos x}={{b}^{3}} \\
& \dfrac{{{\sin }^{2}}x}{\cos x}={{b}^{3}} \\
\end{align}$
Now, we multiply the obtained results, thus, we get,
$\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)={{a}^{3}}{{b}^{3}}$
cos(x)sin(x) = ${{a}^{3}}{{b}^{3}}$ -- (1)
Now, we observe that we want to evaluate ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$. Thus, we first find ${{a}^{2}}{{b}^{2}}$.
Thus, in equation (1), we raise LHS and RHS to the power of $\dfrac{2}{3}$. Doing so, we get,
${{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}={{a}^{2}}{{b}^{2}}$ -- (2)
Next, we proceed to find ${{a}^{2}}+{{b}^{2}}$. For this, we make use of the fact that
$\begin{align}
& {{a}^{3}}=\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right) \\
& {{b}^{3}}=\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right) \\
\end{align}$
Thus, \[\begin{align}
& {{a}^{2}}={{\left( \dfrac{{{\cos }^{2}}x}{\sin x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right) \\
& {{b}^{2}}={{\left( \dfrac{{{\sin }^{2}}x}{\cos x} \right)}^{\dfrac{2}{3}}}=\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right) \\
\end{align}\]
Now, we add these results, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x} \right)+\left( \dfrac{{{\sin }^{\dfrac{4}{3}}}x}{{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{\dfrac{4}{3}}}x{{\cos }^{\dfrac{2}{3}}}x+{{\sin }^{\dfrac{4}{3}}}x{{\sin }^{\dfrac{2}{3}}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{{{\cos }^{2}}x+{{\sin }^{2}}x}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$
Now, we use the property that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Thus, we get,
${{a}^{2}}+{{b}^{2}}=\left( \dfrac{1}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)$ -- (3)
Now, we combine the results from (2) and (3). Thus, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=\left( \dfrac{{{\left( \cos x\sin x \right)}^{\dfrac{2}{3}}}}{{{\sin }^{\dfrac{2}{3}}}x{{\cos }^{\dfrac{2}{3}}}x} \right)\]
Since, numerator and the denominator are the same, we get,
\[\left( {{a}^{2}}{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)=1\]
Hence, LHS=RHS, we have proved the above problem.
Note: In this problem, before jumping straight away to evaluate the term ${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$, first simplifying the expression in hand helps in solving the problem with ease. One can also try to solve${{a}^{2}}{{b}^{2}}({{a}^{2}}+{{b}^{2}})$ term directly without simplifying $\text{cosec x}-\sin x={{a}^{3}}$ and $\sec x-\cos x={{b}^{3}}$ terms, however, this would be an extremely tedious task and it may also happen that problem is unsolvable by this method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

