
If $\bar a,\bar b,\bar c$ are the three non-coplanar vectors, then $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = $
A) $0$
B) $2$
C) $ - 2$
D) None of these
Answer
493.5k+ views
Hint: If three vectors are non-coplanar, then, the vector operations between them like $\bar a.\bar b \times \bar c$ can be written as $\left[ {\bar a\bar b\bar c} \right]$, this value is same as, $\bar c \times \bar a.\bar b = \bar a \times \bar b.\bar c = - \left( {\bar b.\bar a \times \bar c} \right)$ etc., or in other words, the terms which follow the cyclic order $\bar a,\bar b,\bar c$ have similar value, and if don’t follow the cyclic order, then tend to have a negative value of $\left[ {\bar a\bar b\bar c} \right]$. So, in this problem, we are to find those with similar values, and calculate the required value.
Complete step by step answer:
Given, $\bar a,\bar b,\bar c$ are three non-coplanar vectors.
We have to find, the value of $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$
So, we know, that if three non-coplanar vectors are in the form of $\bar a.\bar b \times \bar c$ or any form following the cyclical order of $\bar a,\bar b,\bar c$ have same value and we write it as $\left[ {\bar a\bar b\bar c} \right]$.
So, the terms of the required vector equation are,
$\bar a.\bar b \times \bar c = \left[ {\bar a\bar b\bar c} \right]$
\[\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right]\]
But, as it follows the same cyclical order, so, the value is equal to $\left[ {\bar a\bar b\bar c} \right]$.
That is, $\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
Similarly, $\bar c.\bar a \times \bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
And, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right]$
Now, this term doesn’t follow the cyclical order, it’s value will be equal to $ - \left[ {\bar a\bar b\bar c} \right]$
That is, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right] = - \left[ {\bar a\bar b\bar c} \right]$
So, substituting the values in the given vector equation, we get,
$\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}} + \dfrac{{\left[ {\bar b\bar a\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}}$
Simplifying the expression with the help of known quantities, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} + \left( {\dfrac{{ - \left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}} \right)$
Opening the brackets,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} - \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}$
Now, cancelling the like terms in numerator and denominator, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 1 - 1$
Carrying out the calculations, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 0$
Therefore, the value of the vector equation $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$ is $0$.
Hence, the option (A) is the correct answer.
Note:
The vector operation \[\left[ {\bar a\bar b\bar c} \right]\] is also called a scalar triple product of three vectors. Scalar triple product of three vectors represents the volume of parallelepiped formed by the three vectors. In the case of three non-coplanar vectors, if between the three vectors, at least two of the vectors are similar, then, the value of the resultant vector on operation becomes $0$. That is if, the three vectors are like $\bar a \times \bar c.\bar a$, which we can write as $\left[ {\bar a\bar c\bar a} \right]$, then, the value of the resultant vector is $0$, i.e., $\left[ {\bar a\bar c\bar a} \right] = 0$.
Complete step by step answer:
Given, $\bar a,\bar b,\bar c$ are three non-coplanar vectors.
We have to find, the value of $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$
So, we know, that if three non-coplanar vectors are in the form of $\bar a.\bar b \times \bar c$ or any form following the cyclical order of $\bar a,\bar b,\bar c$ have same value and we write it as $\left[ {\bar a\bar b\bar c} \right]$.
So, the terms of the required vector equation are,
$\bar a.\bar b \times \bar c = \left[ {\bar a\bar b\bar c} \right]$
\[\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right]\]
But, as it follows the same cyclical order, so, the value is equal to $\left[ {\bar a\bar b\bar c} \right]$.
That is, $\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
Similarly, $\bar c.\bar a \times \bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
And, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right]$
Now, this term doesn’t follow the cyclical order, it’s value will be equal to $ - \left[ {\bar a\bar b\bar c} \right]$
That is, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right] = - \left[ {\bar a\bar b\bar c} \right]$
So, substituting the values in the given vector equation, we get,
$\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}} + \dfrac{{\left[ {\bar b\bar a\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}}$
Simplifying the expression with the help of known quantities, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} + \left( {\dfrac{{ - \left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}} \right)$
Opening the brackets,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} - \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}$
Now, cancelling the like terms in numerator and denominator, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 1 - 1$
Carrying out the calculations, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 0$
Therefore, the value of the vector equation $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$ is $0$.
Hence, the option (A) is the correct answer.
Note:
The vector operation \[\left[ {\bar a\bar b\bar c} \right]\] is also called a scalar triple product of three vectors. Scalar triple product of three vectors represents the volume of parallelepiped formed by the three vectors. In the case of three non-coplanar vectors, if between the three vectors, at least two of the vectors are similar, then, the value of the resultant vector on operation becomes $0$. That is if, the three vectors are like $\bar a \times \bar c.\bar a$, which we can write as $\left[ {\bar a\bar c\bar a} \right]$, then, the value of the resultant vector is $0$, i.e., $\left[ {\bar a\bar c\bar a} \right] = 0$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

