
If $\alpha \ and\ \beta $ are the zeros of the quadratic polynomial \[f\left( x \right) = {{x}^{2}}-px+q\], find the value of \[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2\].
Answer
611.7k+ views
Hint: We will be using the concept of quadratic equations to solve the problem. We will be using sum of roots and product of roots to further simplify the problem.
Complete Step-by-Step solution:
Now, we have been given $\alpha \ and\ \beta $are the zeros of the quadratic polynomial\[f\left( x \right)={{x}^{2}}-px+q\]. We have to find the value of\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2\].
Now, to find this value we will be using the sum of roots and product of roots. We know that in a quadratic equation $a{{x}^{2}}+bx+c=0$.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Therefore, in \[f\left( x \right)={{x}^{2}}-px+q\]
$\begin{align}
& \alpha +\beta =\text{sum of roots }=-\left( -p \right)..........\left( 1 \right) \\
& \alpha \beta \ \text{=}\ \text{product of roots }=q...........\left( 2 \right) \\
\end{align}$
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\alpha }^{4}}+{{\beta }^{4}}}{{{\left( \alpha \beta \right)}^{2}}}.........\left( 3 \right)\]
Now, we know that,
${{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{a}^{4}}+{{b}^{4}}+2{{a}^{2}}{{b}^{2}}$
Substituting $a=\alpha \ and\ b=\beta $, we have,
$\begin{align}
& {{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}={{\alpha }^{4}}+{{\beta }^{4}}+2{{\alpha }^{2}}{{\beta }^{2}} \\
& {{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}-2{{\alpha }^{2}}{{\beta }^{2}}.........\left( 4 \right) \\
\end{align}$
Also, we know that,
${{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta $
Therefore,
${{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}$
Now, substituting this in (4) we have,
${{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}$
Also, we will substitute this value of ${{\alpha }^{4}}+{{\beta }^{4}}$ in (3). So, that we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}}{{{\left( \alpha \beta \right)}^{2}}}\]
Now, we will substitute the value of $\alpha +\beta \ and\ \alpha \beta $ from (1) and (2). So, we have,
$\begin{align}
& =\dfrac{{{\left( {{\left( p \right)}^{2}}-2q \right)}^{2}}-2{{\left( q \right)}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{\left( {{p}^{2}}-2q \right)}^{2}}-2{{q}^{2}}}{{{q}^{2}}} \\
\end{align}$
Now, we will use the algebraic identity that
${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
So, that we have,
$\begin{align}
& =\dfrac{{{p}^{4}}+4{{q}^{2}}-4{{p}^{2}}q-2{{q}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{p}^{4}}-4{{p}^{2}}q+2{{q}^{2}}}{{{q}^{2}}} \\
& \dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2 \\
\end{align}$
Since we have LHS = RHS.
Hence Proved.
Note: To solve these types of questions one must know how to find the relation between sum of roots, product of roots and coefficient of quadratic equation.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Complete Step-by-Step solution:
Now, we have been given $\alpha \ and\ \beta $are the zeros of the quadratic polynomial\[f\left( x \right)={{x}^{2}}-px+q\]. We have to find the value of\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2\].
Now, to find this value we will be using the sum of roots and product of roots. We know that in a quadratic equation $a{{x}^{2}}+bx+c=0$.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Therefore, in \[f\left( x \right)={{x}^{2}}-px+q\]
$\begin{align}
& \alpha +\beta =\text{sum of roots }=-\left( -p \right)..........\left( 1 \right) \\
& \alpha \beta \ \text{=}\ \text{product of roots }=q...........\left( 2 \right) \\
\end{align}$
Now, we will take LHS and prove it to be equal to RHS.
In LHS we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\alpha }^{4}}+{{\beta }^{4}}}{{{\left( \alpha \beta \right)}^{2}}}.........\left( 3 \right)\]
Now, we know that,
${{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}={{a}^{4}}+{{b}^{4}}+2{{a}^{2}}{{b}^{2}}$
Substituting $a=\alpha \ and\ b=\beta $, we have,
$\begin{align}
& {{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}={{\alpha }^{4}}+{{\beta }^{4}}+2{{\alpha }^{2}}{{\beta }^{2}} \\
& {{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\alpha }^{2}}+{{\beta }^{2}} \right)}^{2}}-2{{\alpha }^{2}}{{\beta }^{2}}.........\left( 4 \right) \\
\end{align}$
Also, we know that,
${{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta $
Therefore,
${{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}$
Now, substituting this in (4) we have,
${{\alpha }^{4}}+{{\beta }^{4}}={{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}$
Also, we will substitute this value of ${{\alpha }^{4}}+{{\beta }^{4}}$ in (3). So, that we have,
\[\dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta \right)}^{2}}-2{{\left( \alpha \beta \right)}^{2}}}{{{\left( \alpha \beta \right)}^{2}}}\]
Now, we will substitute the value of $\alpha +\beta \ and\ \alpha \beta $ from (1) and (2). So, we have,
$\begin{align}
& =\dfrac{{{\left( {{\left( p \right)}^{2}}-2q \right)}^{2}}-2{{\left( q \right)}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{\left( {{p}^{2}}-2q \right)}^{2}}-2{{q}^{2}}}{{{q}^{2}}} \\
\end{align}$
Now, we will use the algebraic identity that
${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
So, that we have,
$\begin{align}
& =\dfrac{{{p}^{4}}+4{{q}^{2}}-4{{p}^{2}}q-2{{q}^{2}}}{{{q}^{2}}} \\
& =\dfrac{{{p}^{4}}-4{{p}^{2}}q+2{{q}^{2}}}{{{q}^{2}}} \\
& \dfrac{{{\alpha }^{2}}}{{{\beta }^{2}}}+\dfrac{{{\beta }^{2}}}{{{\alpha }^{2}}}=\dfrac{{{p}^{4}}}{{{q}^{2}}}-\dfrac{4{{p}^{2}}}{q}+2 \\
\end{align}$
Since we have LHS = RHS.
Hence Proved.
Note: To solve these types of questions one must know how to find the relation between sum of roots, product of roots and coefficient of quadratic equation.
$\begin{align}
& \text{sum of roots }=\dfrac{-b}{a} \\
& \text{product of roots }=\dfrac{c}{a} \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

