
If $af(x + 1) + bf\left( {\dfrac{1}{{x + 1}}} \right) = x$ $x \ne - 1,a \ne b$ then $f\left( 2 \right)$ is equal to
A. $\dfrac{{2a + b}}{{2\left( {{a^2} - {b^2}} \right)}}$
B. $\dfrac{a}{{{a^2} - {b^2}}}$
C. $\dfrac{{a + 2b}}{{{a^2} - {b^2}}}$
D. None of these
Answer
512.4k+ views
Hint: First, we shall analyze the given information. The given equation is $af(x + 1) + bf\left( {\dfrac{1}{{x + 1}}} \right) = x$
We are asked to calculate the value of $f\left( 2 \right)$
Now, we need to replace $x + 1$ by $\dfrac{1}{{x + 1}}$ in the given equation so that we can obtain two equations. By simplifying those two equations, we can obtain the final equation.
We can get the value of $f\left( 2 \right)$ when we substitute $x = 1$ in the final equation which is the required answer too.
Complete step by step answer:
The given equation is $af(x + 1) + bf\left( {\dfrac{1}{{x + 1}}} \right) = x$ $x \ne - 1,a \ne b$…………..$\left( 1 \right)$
We are asked to calculate the value of $f\left( 2 \right)$
Now, we need to replace $x + 1$ by $\dfrac{1}{{x + 1}}$ in the given equation.
$ \Rightarrow x = \dfrac{1}{{x + 1}} - 1$
Now, our new equation is as follows.
\[af\left( {\dfrac{1}{{x + 1}}} \right) + bf\left( {x + 1} \right) = \dfrac{1}{{x + 1}} - 1\]
\[ \Rightarrow af\left( {\dfrac{1}{{x + 1}}} \right) + bf\left( {x + 1} \right) = \dfrac{{1 - x - 1}}{{x + 1}}\]
\[ \Rightarrow af\left( {\dfrac{1}{{x + 1}}} \right) + bf\left( {x + 1} \right) = \dfrac{{ - x}}{{x + 1}}\] ……………$\left( 2 \right)$
Here, we got two equations.
Now, we need to multiply the first equation by a, and the second equation by b.
When we multiply the first equation by a, we get
${a^2}f(x + 1) + abf\left( {\dfrac{1}{{x + 1}}} \right) = ax$……………$\left( 3 \right)$
When we multiply the second equation by b, we get
\[ \Rightarrow abf\left( {\dfrac{1}{{x + 1}}} \right) + {b^2}f\left( {x + 1} \right) = \dfrac{{ - bx}}{{x + 1}}\]…………………$\left( 4 \right)$
Now, we have to subtract the third and the fourth equations, we get
${a^2}f(x + 1) + abf\left( {\dfrac{1}{{x + 1}}} \right) - abf\left( {\dfrac{1}{{x + 1}}} \right) - {b^2}f\left( {x + 1} \right) = ax - \dfrac{{ - bx}}{{x + 1}}$
$ \Rightarrow {a^2}f(x + 1) + abf\left( {\dfrac{1}{{x + 1}}} \right) - abf\left( {\dfrac{1}{{x + 1}}} \right) - {b^2}f\left( {x + 1} \right) = ax + \dfrac{{bx}}{{x + 1}}$
$ \Rightarrow {a^2}f(x + 1) - {b^2}f\left( {x + 1} \right) + abf\left( {\dfrac{1}{{x + 1}}} \right) - abf\left( {\dfrac{1}{{x + 1}}} \right) = ax + \dfrac{{bx}}{{x + 1}}$
$ \Rightarrow {a^2}f(x + 1) - {b^2}f\left( {x + 1} \right) = ax + \dfrac{{bx}}{{x + 1}}$
Now, we shall pick the common terms.
\[ \Rightarrow \left( {{a^2} - {b^2}} \right)f(x + 1) = ax + \dfrac{{bx}}{{x + 1}}\]
On taking LCM on the right-hand side, we get
\[ \Rightarrow \left( {{a^2} - {b^2}} \right)f(x + 1) = \dfrac{{ax\left( {x + 1} \right) + bx}}{{x + 1}}\]
\[ \Rightarrow \left( {{a^2} - {b^2}} \right)f(x + 1) = \dfrac{{a{x^2} + ax + bx}}{{x + 1}}\]
\[ \Rightarrow f(x + 1) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{a{x^2} + ax + bx}}{{x + 1}}\] , $x \ne - 1,a \ne b$………..$\left( 5 \right)$
We are asked to calculate the value of$f\left( 2 \right)$
We can get the value of$f\left( 2 \right)$when we substitute $x = 1$in $\left( 5 \right)$
\[f(1 + 1) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{a{1^2} + a + b}}{{1 + 1}}\]
\[ \Rightarrow f(2) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{a + a + b}}{2}\]
\[ \Rightarrow f(2) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{2a + b}}{2}\]
\[ \Rightarrow f(2) = \dfrac{{2a + b}}{{2\left( {{a^2} - {b^2}} \right)}}\]
So, the correct answer is “Option A”.
Note: The given equation is $af(x + 1) + bf\left( {\dfrac{1}{{x + 1}}} \right) = x$
We are asked to calculate the value of $f\left( 2 \right)$
It can be solved in another method. That is we shall substitute $x = 1$ in the given equation.
Again, we need to substitute $x = - \dfrac{1}{2}$ in the given equation.
Now, solving the obtained equations as we followed above, we can obtain the value of $f\left( 2 \right)$
We are asked to calculate the value of $f\left( 2 \right)$
Now, we need to replace $x + 1$ by $\dfrac{1}{{x + 1}}$ in the given equation so that we can obtain two equations. By simplifying those two equations, we can obtain the final equation.
We can get the value of $f\left( 2 \right)$ when we substitute $x = 1$ in the final equation which is the required answer too.
Complete step by step answer:
The given equation is $af(x + 1) + bf\left( {\dfrac{1}{{x + 1}}} \right) = x$ $x \ne - 1,a \ne b$…………..$\left( 1 \right)$
We are asked to calculate the value of $f\left( 2 \right)$
Now, we need to replace $x + 1$ by $\dfrac{1}{{x + 1}}$ in the given equation.
$ \Rightarrow x = \dfrac{1}{{x + 1}} - 1$
Now, our new equation is as follows.
\[af\left( {\dfrac{1}{{x + 1}}} \right) + bf\left( {x + 1} \right) = \dfrac{1}{{x + 1}} - 1\]
\[ \Rightarrow af\left( {\dfrac{1}{{x + 1}}} \right) + bf\left( {x + 1} \right) = \dfrac{{1 - x - 1}}{{x + 1}}\]
\[ \Rightarrow af\left( {\dfrac{1}{{x + 1}}} \right) + bf\left( {x + 1} \right) = \dfrac{{ - x}}{{x + 1}}\] ……………$\left( 2 \right)$
Here, we got two equations.
Now, we need to multiply the first equation by a, and the second equation by b.
When we multiply the first equation by a, we get
${a^2}f(x + 1) + abf\left( {\dfrac{1}{{x + 1}}} \right) = ax$……………$\left( 3 \right)$
When we multiply the second equation by b, we get
\[ \Rightarrow abf\left( {\dfrac{1}{{x + 1}}} \right) + {b^2}f\left( {x + 1} \right) = \dfrac{{ - bx}}{{x + 1}}\]…………………$\left( 4 \right)$
Now, we have to subtract the third and the fourth equations, we get
${a^2}f(x + 1) + abf\left( {\dfrac{1}{{x + 1}}} \right) - abf\left( {\dfrac{1}{{x + 1}}} \right) - {b^2}f\left( {x + 1} \right) = ax - \dfrac{{ - bx}}{{x + 1}}$
$ \Rightarrow {a^2}f(x + 1) + abf\left( {\dfrac{1}{{x + 1}}} \right) - abf\left( {\dfrac{1}{{x + 1}}} \right) - {b^2}f\left( {x + 1} \right) = ax + \dfrac{{bx}}{{x + 1}}$
$ \Rightarrow {a^2}f(x + 1) - {b^2}f\left( {x + 1} \right) + abf\left( {\dfrac{1}{{x + 1}}} \right) - abf\left( {\dfrac{1}{{x + 1}}} \right) = ax + \dfrac{{bx}}{{x + 1}}$
$ \Rightarrow {a^2}f(x + 1) - {b^2}f\left( {x + 1} \right) = ax + \dfrac{{bx}}{{x + 1}}$
Now, we shall pick the common terms.
\[ \Rightarrow \left( {{a^2} - {b^2}} \right)f(x + 1) = ax + \dfrac{{bx}}{{x + 1}}\]
On taking LCM on the right-hand side, we get
\[ \Rightarrow \left( {{a^2} - {b^2}} \right)f(x + 1) = \dfrac{{ax\left( {x + 1} \right) + bx}}{{x + 1}}\]
\[ \Rightarrow \left( {{a^2} - {b^2}} \right)f(x + 1) = \dfrac{{a{x^2} + ax + bx}}{{x + 1}}\]
\[ \Rightarrow f(x + 1) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{a{x^2} + ax + bx}}{{x + 1}}\] , $x \ne - 1,a \ne b$………..$\left( 5 \right)$
We are asked to calculate the value of$f\left( 2 \right)$
We can get the value of$f\left( 2 \right)$when we substitute $x = 1$in $\left( 5 \right)$
\[f(1 + 1) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{a{1^2} + a + b}}{{1 + 1}}\]
\[ \Rightarrow f(2) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{a + a + b}}{2}\]
\[ \Rightarrow f(2) = \dfrac{1}{{\left( {{a^2} - {b^2}} \right)}} \times \dfrac{{2a + b}}{2}\]
\[ \Rightarrow f(2) = \dfrac{{2a + b}}{{2\left( {{a^2} - {b^2}} \right)}}\]
So, the correct answer is “Option A”.
Note: The given equation is $af(x + 1) + bf\left( {\dfrac{1}{{x + 1}}} \right) = x$
We are asked to calculate the value of $f\left( 2 \right)$
It can be solved in another method. That is we shall substitute $x = 1$ in the given equation.
Again, we need to substitute $x = - \dfrac{1}{2}$ in the given equation.
Now, solving the obtained equations as we followed above, we can obtain the value of $f\left( 2 \right)$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

What are the public facilities provided by the government? Also explain each facility

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

