
If \[a,b,c\] ae non-coplanar vectors, then which of the following points are collinear whose position vectors are given by:
This question has multiple correct options
A. \[a - 2b + 3c,2a + 3b - 4c, - 7b + 10c\]
B. \[3a - 4b + 3c, - 4a + 5b - 6c,4a - 7b + 6c\]
C. \[2a + 5b - 4c,a + 4b - 3c,4a + 7b - 6c\]
D. \[6a - b - 2c,2a + 3b + 2c, - a - 9b + 7c\]
Answer
581.7k+ views
Hint: In this question, first of all we consider the position vectors and apply the condition of collinearity to find whether the given points are in collinear or not. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
A. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = \overrightarrow a - 2\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b - 4\overrightarrow c \] and \[\overrightarrow R = - 7\overrightarrow b + 10\overrightarrow c \].
We know that, the condition of collinearity to be the position vectors \[\overrightarrow P = \overrightarrow a + \overrightarrow b + \overrightarrow c ,\overrightarrow Q = \overrightarrow d + \overrightarrow e + \overrightarrow f \] and \[\overrightarrow R = \overrightarrow g + \overrightarrow h + \overrightarrow i \] are in collinear is \[\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = 0\]
So, the condition for the position vectors \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] to be in collinear is
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
2&3&{ - 4} \\
0&{ - 7}&{10}
\end{array}} \right| = 0 \\
\Rightarrow 1\left\{ {\left( 3 \right)\left( {10} \right) - \left( { - 4} \right)\left( { - 7} \right)} \right\} - \left( { - 2} \right)\left\{ {\left( 2 \right)\left( {10} \right) - \left( { - 4} \right)\left( 0 \right)} \right\} + 3\left\{ {\left( 2 \right)\left( { - 7} \right) - \left( 3 \right)\left( 0 \right)} \right\} = 0 \\
\Rightarrow 1\left\{ {30 - 28} \right\} + 2\left\{ {20 - 0} \right\} + 3\left\{ { - 14 - 0} \right\} = 0 \\
\Rightarrow 1\left( 2 \right) + 2\left( {20} \right) + 3\left( { - 14} \right) = 0 \\
\Rightarrow 2 + 40 - 42 = 0 \\
\therefore 0 = 0 \\
\]
Therefore, the position vectors \[\overrightarrow P = \overrightarrow a - 2\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b - 4\overrightarrow c \] and \[\overrightarrow R = - 7\overrightarrow b + 10\overrightarrow c \] are in collinear.
Thus, the point A. \[a - 2b + 3c,2a + 3b - 4c, - 7b + 10c\] is collinear.
B. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = 3\overrightarrow a - 4\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = - 4\overrightarrow a + 5\overrightarrow b - 6\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a - 7\overrightarrow b + 6\overrightarrow c \].
The condition for the position vectors \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] to be in collinear is
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
3&{ - 4}&3 \\
{ - 4}&5&{ - 6} \\
4&{ - 7}&6
\end{array}} \right| = 0 \\
\Rightarrow 3\left\{ {\left( 5 \right)\left( 6 \right) - \left( { - 7} \right)\left( { - 6} \right)} \right\} - \left( { - 4} \right)\left\{ {\left( { - 4} \right)\left( 6 \right) - \left( { - 6} \right)\left( 4 \right)} \right\} + 3\left\{ {\left( { - 4} \right)\left( { - 7} \right) - \left( 5 \right)\left( 4 \right)} \right\} = 0 \\
\Rightarrow 3\left\{ {30 - 42} \right\} + 4\left\{ { - 24 + 24} \right\} + 3\left\{ {28 - 20} \right\} = 0 \\
\Rightarrow 3\left( { - 12} \right) + 4\left( 0 \right) + 3\left( 8 \right) = 0 \\
\Rightarrow - 36 - 0 + 24 = 0 \\
\Rightarrow - 12 = 0 \\
\]
But \[ - 12 \ne 0\]. So, the position vectors \[\overrightarrow P = 3\overrightarrow a - 4\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = - 4\overrightarrow a + 5\overrightarrow b - 6\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a - 7\overrightarrow b + 6\overrightarrow c \] are not in collinear.
Thus, the point B. \[3a - 4b + 3c, - 4a + 5b - 6c,4a - 7b + 6c\] is not collinear.
C. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = 2\overrightarrow a + 5\overrightarrow b - 4\overrightarrow c ,\overrightarrow Q = \overrightarrow a + 4\overrightarrow b - 3\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a + 7\overrightarrow b - 6\overrightarrow c \].
The condition for the position vectors \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] to be in collinear is
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
2&5&{ - 4} \\
1&4&{ - 3} \\
4&7&{ - 6}
\end{array}} \right| = 0 \\
\Rightarrow 2\left\{ {\left( 4 \right)\left( { - 6} \right) - \left( { - 3} \right)\left( 7 \right)} \right\} - 5\left\{ {\left( 1 \right)\left( { - 6} \right) - \left( { - 3} \right)\left( 4 \right)} \right\} + \left( { - 4} \right)\left\{ {\left( 1 \right)\left( 7 \right) - \left( 4 \right)\left( 4 \right)} \right\} = 0 \\
\Rightarrow 2\left\{ { - 24 + 21} \right\} - 5\left\{ { - 6 + 12} \right\} - 4\left\{ {7 - 16} \right\} = 0 \\
\Rightarrow 2\left( { - 3} \right) - 5\left( 6 \right) - 4\left( { - 9} \right) = 0 \\
\Rightarrow - 6 - 30 + 36 = 0 \\
\therefore 0 = 0 \\
\]
So, the position vectors \[\overrightarrow P = 2\overrightarrow a + 5\overrightarrow b - 4\overrightarrow c ,\overrightarrow Q = \overrightarrow a + 4\overrightarrow b - 3\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a + 7\overrightarrow b - 6\overrightarrow c \] are in colinear.
Thus, the point C. \[2a + 5b - 4c,a + 4b - 3c,4a + 7b - 6c\] is collinear.
D. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = 6\overrightarrow a - \overrightarrow b - 2\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b + 2\overrightarrow c \] and \[\overrightarrow R = - \overrightarrow a - 9\overrightarrow b + 7\overrightarrow c \].
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
6&{ - 1}&{ - 2} \\
2&3&2 \\
{ - 1}&{ - 9}&7
\end{array}} \right| = 0 \\
\Rightarrow 6\left\{ {\left( 3 \right)\left( 7 \right) - \left( 2 \right)\left( { - 9} \right)} \right\} - \left( { - 1} \right)\left\{ {\left( 2 \right)\left( 7 \right) - \left( 2 \right)\left( { - 1} \right)} \right\} + \left( { - 2} \right)\left\{ {\left( 2 \right)\left( { - 9} \right) - \left( 3 \right)\left( { - 1} \right)} \right\} = 0 \\
\Rightarrow 6\left\{ {21 + 18} \right\} + 1\left\{ {14 + 2} \right\} - 2\left\{ { - 18 + 3} \right\} = 0 \\
\Rightarrow 6\left( {39} \right) + 1\left( {16} \right) - 2\left( { - 15} \right) = 0 \\
\Rightarrow 234 + 16 + 30 = 0 \\
\Rightarrow 280 = 0 \\
\]
But, \[280 \ne 0\]. So, the position vectors \[\overrightarrow P = 6\overrightarrow a - \overrightarrow b - 2\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b + 2\overrightarrow c \] and \[\overrightarrow R = - \overrightarrow a - 9\overrightarrow b + 7\overrightarrow c \]are not in collinear.
Thus, point D. \[6a - b - 2c,2a + 3b + 2c, - a - 9b + 7c\]is not collinear.
Note:Three points with position vectors \[\overrightarrow A ,\overrightarrow B ,\overrightarrow C \] are collinear if and only if the vectors \[\left( {\overrightarrow B - \overrightarrow A } \right)\] and \[\left( {\overrightarrow C - \overrightarrow A } \right)\] are in parallel. In other words, to prove collinearity, we would need to show \[\left( {\overrightarrow B - \overrightarrow A } \right) = \lambda \left( {\overrightarrow C - \overrightarrow A } \right)\] for some constant \[\lambda \]. By this method also we can prove the collinearity.
Complete step-by-step answer:
A. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = \overrightarrow a - 2\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b - 4\overrightarrow c \] and \[\overrightarrow R = - 7\overrightarrow b + 10\overrightarrow c \].
We know that, the condition of collinearity to be the position vectors \[\overrightarrow P = \overrightarrow a + \overrightarrow b + \overrightarrow c ,\overrightarrow Q = \overrightarrow d + \overrightarrow e + \overrightarrow f \] and \[\overrightarrow R = \overrightarrow g + \overrightarrow h + \overrightarrow i \] are in collinear is \[\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = 0\]
So, the condition for the position vectors \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] to be in collinear is
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
2&3&{ - 4} \\
0&{ - 7}&{10}
\end{array}} \right| = 0 \\
\Rightarrow 1\left\{ {\left( 3 \right)\left( {10} \right) - \left( { - 4} \right)\left( { - 7} \right)} \right\} - \left( { - 2} \right)\left\{ {\left( 2 \right)\left( {10} \right) - \left( { - 4} \right)\left( 0 \right)} \right\} + 3\left\{ {\left( 2 \right)\left( { - 7} \right) - \left( 3 \right)\left( 0 \right)} \right\} = 0 \\
\Rightarrow 1\left\{ {30 - 28} \right\} + 2\left\{ {20 - 0} \right\} + 3\left\{ { - 14 - 0} \right\} = 0 \\
\Rightarrow 1\left( 2 \right) + 2\left( {20} \right) + 3\left( { - 14} \right) = 0 \\
\Rightarrow 2 + 40 - 42 = 0 \\
\therefore 0 = 0 \\
\]
Therefore, the position vectors \[\overrightarrow P = \overrightarrow a - 2\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b - 4\overrightarrow c \] and \[\overrightarrow R = - 7\overrightarrow b + 10\overrightarrow c \] are in collinear.
Thus, the point A. \[a - 2b + 3c,2a + 3b - 4c, - 7b + 10c\] is collinear.
B. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = 3\overrightarrow a - 4\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = - 4\overrightarrow a + 5\overrightarrow b - 6\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a - 7\overrightarrow b + 6\overrightarrow c \].
The condition for the position vectors \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] to be in collinear is
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
3&{ - 4}&3 \\
{ - 4}&5&{ - 6} \\
4&{ - 7}&6
\end{array}} \right| = 0 \\
\Rightarrow 3\left\{ {\left( 5 \right)\left( 6 \right) - \left( { - 7} \right)\left( { - 6} \right)} \right\} - \left( { - 4} \right)\left\{ {\left( { - 4} \right)\left( 6 \right) - \left( { - 6} \right)\left( 4 \right)} \right\} + 3\left\{ {\left( { - 4} \right)\left( { - 7} \right) - \left( 5 \right)\left( 4 \right)} \right\} = 0 \\
\Rightarrow 3\left\{ {30 - 42} \right\} + 4\left\{ { - 24 + 24} \right\} + 3\left\{ {28 - 20} \right\} = 0 \\
\Rightarrow 3\left( { - 12} \right) + 4\left( 0 \right) + 3\left( 8 \right) = 0 \\
\Rightarrow - 36 - 0 + 24 = 0 \\
\Rightarrow - 12 = 0 \\
\]
But \[ - 12 \ne 0\]. So, the position vectors \[\overrightarrow P = 3\overrightarrow a - 4\overrightarrow b + 3\overrightarrow c ,\overrightarrow Q = - 4\overrightarrow a + 5\overrightarrow b - 6\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a - 7\overrightarrow b + 6\overrightarrow c \] are not in collinear.
Thus, the point B. \[3a - 4b + 3c, - 4a + 5b - 6c,4a - 7b + 6c\] is not collinear.
C. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = 2\overrightarrow a + 5\overrightarrow b - 4\overrightarrow c ,\overrightarrow Q = \overrightarrow a + 4\overrightarrow b - 3\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a + 7\overrightarrow b - 6\overrightarrow c \].
The condition for the position vectors \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] to be in collinear is
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
2&5&{ - 4} \\
1&4&{ - 3} \\
4&7&{ - 6}
\end{array}} \right| = 0 \\
\Rightarrow 2\left\{ {\left( 4 \right)\left( { - 6} \right) - \left( { - 3} \right)\left( 7 \right)} \right\} - 5\left\{ {\left( 1 \right)\left( { - 6} \right) - \left( { - 3} \right)\left( 4 \right)} \right\} + \left( { - 4} \right)\left\{ {\left( 1 \right)\left( 7 \right) - \left( 4 \right)\left( 4 \right)} \right\} = 0 \\
\Rightarrow 2\left\{ { - 24 + 21} \right\} - 5\left\{ { - 6 + 12} \right\} - 4\left\{ {7 - 16} \right\} = 0 \\
\Rightarrow 2\left( { - 3} \right) - 5\left( 6 \right) - 4\left( { - 9} \right) = 0 \\
\Rightarrow - 6 - 30 + 36 = 0 \\
\therefore 0 = 0 \\
\]
So, the position vectors \[\overrightarrow P = 2\overrightarrow a + 5\overrightarrow b - 4\overrightarrow c ,\overrightarrow Q = \overrightarrow a + 4\overrightarrow b - 3\overrightarrow c \] and \[\overrightarrow R = 4\overrightarrow a + 7\overrightarrow b - 6\overrightarrow c \] are in colinear.
Thus, the point C. \[2a + 5b - 4c,a + 4b - 3c,4a + 7b - 6c\] is collinear.
D. let \[\overrightarrow P ,\overrightarrow Q ,\overrightarrow R \] be the position vectors which are given by \[\overrightarrow P = 6\overrightarrow a - \overrightarrow b - 2\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b + 2\overrightarrow c \] and \[\overrightarrow R = - \overrightarrow a - 9\overrightarrow b + 7\overrightarrow c \].
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
6&{ - 1}&{ - 2} \\
2&3&2 \\
{ - 1}&{ - 9}&7
\end{array}} \right| = 0 \\
\Rightarrow 6\left\{ {\left( 3 \right)\left( 7 \right) - \left( 2 \right)\left( { - 9} \right)} \right\} - \left( { - 1} \right)\left\{ {\left( 2 \right)\left( 7 \right) - \left( 2 \right)\left( { - 1} \right)} \right\} + \left( { - 2} \right)\left\{ {\left( 2 \right)\left( { - 9} \right) - \left( 3 \right)\left( { - 1} \right)} \right\} = 0 \\
\Rightarrow 6\left\{ {21 + 18} \right\} + 1\left\{ {14 + 2} \right\} - 2\left\{ { - 18 + 3} \right\} = 0 \\
\Rightarrow 6\left( {39} \right) + 1\left( {16} \right) - 2\left( { - 15} \right) = 0 \\
\Rightarrow 234 + 16 + 30 = 0 \\
\Rightarrow 280 = 0 \\
\]
But, \[280 \ne 0\]. So, the position vectors \[\overrightarrow P = 6\overrightarrow a - \overrightarrow b - 2\overrightarrow c ,\overrightarrow Q = 2\overrightarrow a + 3\overrightarrow b + 2\overrightarrow c \] and \[\overrightarrow R = - \overrightarrow a - 9\overrightarrow b + 7\overrightarrow c \]are not in collinear.
Thus, point D. \[6a - b - 2c,2a + 3b + 2c, - a - 9b + 7c\]is not collinear.
Note:Three points with position vectors \[\overrightarrow A ,\overrightarrow B ,\overrightarrow C \] are collinear if and only if the vectors \[\left( {\overrightarrow B - \overrightarrow A } \right)\] and \[\left( {\overrightarrow C - \overrightarrow A } \right)\] are in parallel. In other words, to prove collinearity, we would need to show \[\left( {\overrightarrow B - \overrightarrow A } \right) = \lambda \left( {\overrightarrow C - \overrightarrow A } \right)\] for some constant \[\lambda \]. By this method also we can prove the collinearity.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Write any three uses of polaroids class 12 physics CBSE

