
If ${{A}_{3\times 3}}$ is a matrix such that $\left| A \right|=a$ , $B=\left( adjA \right)$ such that $\left| B \right|=b$ . Find the value of $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}$ where $\dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty $ , and $a=3$ .
Answer
613.5k+ views
Hint: For solving this question we will use the $\left| adjA \right|={{\left| A \right|}^{2}}$ formula from the matrix and determinants concept. After that, we will put the value of $a$ and $b$ in the expression of $S$ and then analyse it and calculate its value and then easily we will find the value of $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}$.
Complete step by step answer:
It is given that ${{A}_{3\times 3}}$ is a matrix such that $\left| A \right|=a=3$ , $B=\left( adjA \right)$ such that $\left| B \right|=b$ and $\dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty $ . And we have to find the value of $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}$ .
Now, we know that it $A$ is a $3\times 3$ square matrix then, $\left| adjA \right|={{\left| A \right|}^{2}}$ . So, as it is given that $\left| A \right|=a=3$ and $B=\left( adjA \right)$ . Then,
$\begin{align}
& B=\left( adjA \right) \\
& \Rightarrow \left| B \right|=b=\left| adjA \right|={{\left| A \right|}^{2}} \\
& \Rightarrow b={{a}^{2}} \\
& \Rightarrow b=9.......................\left( 1 \right) \\
\end{align}$
Now, as we have the value of both $a$ and $b$ . And $\dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty $ . Then,
$\begin{align}
& \dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{1}{2}S=\dfrac{3}{9}+\dfrac{{{3}^{2}}}{{{9}^{3}}}+\dfrac{{{3}^{3}}}{{{9}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{{{3}^{2}}}{{{3}^{6}}}+\dfrac{{{3}^{3}}}{{{3}^{10}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty .......................\left( 2 \right) \\
\end{align}$
Now, as the expression of $\dfrac{S}{2}$ is an infinite G.P. with a common ratio of $\dfrac{1}{{{3}^{3}}}$ so, first we will multiply the $\dfrac{S}{2}$ by $\dfrac{1}{{{3}^{3}}}$ . Then,
$\begin{align}
& \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{1}{{{3}^{3}}}\times \dfrac{S}{2}=\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+\dfrac{1}{{{3}^{10}}}...............\text{ }up\text{ }to\text{ }\infty ...........................\left( 3 \right) \\
\end{align}$
Now, subtract the equation (3) from the equation (2). Then,
$\begin{align}
& \dfrac{S}{2}-\dfrac{1}{{{3}^{3}}}\times \dfrac{S}{2}=\left( \dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty \right)-\left( \dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+\dfrac{1}{{{3}^{10}}}+...............\text{ }up\text{ }to\text{ }\infty \right) \\
& \Rightarrow \dfrac{S}{2}\left( 1-\dfrac{1}{27} \right)=\dfrac{1}{3} \\
& \Rightarrow \dfrac{S}{2}\times \dfrac{26}{27}=\dfrac{1}{3} \\
& \Rightarrow S=\dfrac{9}{13}.........................\left( 4 \right) \\
\end{align}$
Now, from equation (1) put $b=9$ , from equation (4) $S=\dfrac{9}{13}$ and the given data put $a=3$ in the $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}$ and calculate its value. Then,
$\begin{align}
& \dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25} \\
& \Rightarrow \dfrac{\left( 3\times 81+9\times 3+1 \right)}{25}\times \dfrac{9}{13} \\
& \Rightarrow \dfrac{\left( 243+27+1 \right)}{25}\times \dfrac{9}{13} \\
& \Rightarrow \dfrac{2439}{325}\approx 7.5046 \\
\end{align}$
Now, from the above result, we can say that $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}=\dfrac{2439}{325}\approx 7.5046$ .
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to calculate the answer quickly. Moreover, the student should calculate the value of $b$ correctly and don’t confuse it with the value of $\left| A \right|$ or apply any lengthy method to find it. After that for the value of $S$ G.P. formation should be done correctly and we can apply the formula of summation of infinite G.P having common ratio less than one also to calculate $S$ .
Complete step by step answer:
It is given that ${{A}_{3\times 3}}$ is a matrix such that $\left| A \right|=a=3$ , $B=\left( adjA \right)$ such that $\left| B \right|=b$ and $\dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty $ . And we have to find the value of $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}$ .
Now, we know that it $A$ is a $3\times 3$ square matrix then, $\left| adjA \right|={{\left| A \right|}^{2}}$ . So, as it is given that $\left| A \right|=a=3$ and $B=\left( adjA \right)$ . Then,
$\begin{align}
& B=\left( adjA \right) \\
& \Rightarrow \left| B \right|=b=\left| adjA \right|={{\left| A \right|}^{2}} \\
& \Rightarrow b={{a}^{2}} \\
& \Rightarrow b=9.......................\left( 1 \right) \\
\end{align}$
Now, as we have the value of both $a$ and $b$ . And $\dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty $ . Then,
$\begin{align}
& \dfrac{1}{2}S=\dfrac{a}{b}+\dfrac{{{a}^{2}}}{{{b}^{3}}}+\dfrac{{{a}^{3}}}{{{b}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{1}{2}S=\dfrac{3}{9}+\dfrac{{{3}^{2}}}{{{9}^{3}}}+\dfrac{{{3}^{3}}}{{{9}^{5}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{{{3}^{2}}}{{{3}^{6}}}+\dfrac{{{3}^{3}}}{{{3}^{10}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty .......................\left( 2 \right) \\
\end{align}$
Now, as the expression of $\dfrac{S}{2}$ is an infinite G.P. with a common ratio of $\dfrac{1}{{{3}^{3}}}$ so, first we will multiply the $\dfrac{S}{2}$ by $\dfrac{1}{{{3}^{3}}}$ . Then,
$\begin{align}
& \dfrac{S}{2}=\dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty \\
& \Rightarrow \dfrac{1}{{{3}^{3}}}\times \dfrac{S}{2}=\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+\dfrac{1}{{{3}^{10}}}...............\text{ }up\text{ }to\text{ }\infty ...........................\left( 3 \right) \\
\end{align}$
Now, subtract the equation (3) from the equation (2). Then,
$\begin{align}
& \dfrac{S}{2}-\dfrac{1}{{{3}^{3}}}\times \dfrac{S}{2}=\left( \dfrac{1}{3}+\dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+...............\text{ }up\text{ }to\text{ }\infty \right)-\left( \dfrac{1}{{{3}^{4}}}+\dfrac{1}{{{3}^{7}}}+\dfrac{1}{{{3}^{10}}}+...............\text{ }up\text{ }to\text{ }\infty \right) \\
& \Rightarrow \dfrac{S}{2}\left( 1-\dfrac{1}{27} \right)=\dfrac{1}{3} \\
& \Rightarrow \dfrac{S}{2}\times \dfrac{26}{27}=\dfrac{1}{3} \\
& \Rightarrow S=\dfrac{9}{13}.........................\left( 4 \right) \\
\end{align}$
Now, from equation (1) put $b=9$ , from equation (4) $S=\dfrac{9}{13}$ and the given data put $a=3$ in the $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}$ and calculate its value. Then,
$\begin{align}
& \dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25} \\
& \Rightarrow \dfrac{\left( 3\times 81+9\times 3+1 \right)}{25}\times \dfrac{9}{13} \\
& \Rightarrow \dfrac{\left( 243+27+1 \right)}{25}\times \dfrac{9}{13} \\
& \Rightarrow \dfrac{2439}{325}\approx 7.5046 \\
\end{align}$
Now, from the above result, we can say that $\dfrac{\left( a{{b}^{2}}+{{a}^{2}}b+1 \right)S}{25}=\dfrac{2439}{325}\approx 7.5046$ .
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to calculate the answer quickly. Moreover, the student should calculate the value of $b$ correctly and don’t confuse it with the value of $\left| A \right|$ or apply any lengthy method to find it. After that for the value of $S$ G.P. formation should be done correctly and we can apply the formula of summation of infinite G.P having common ratio less than one also to calculate $S$ .
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

