
If A and B are symmetric matrices and AB = BA then \[{{A}^{-1}}B\] is a
(a) Symmetric matrix
(b) Skew symmetric matrix
(c) Identity matrix
(d) None of these
Answer
594.6k+ views
Hint: To solve this question we first need to know when is a matrix A called symmetric. It is so when, \[{{A}^{'}}=A\]. Now to compute if \[{{A}^{-1}}B\] is symmetric or skew symmetric compute the transpose of \[{{A}^{-1}}B\]. Use the given theory AB = BA to conclude the answer. Remember that a matrix is skew symmetric if \[{{A}^{'}}=-A\].
Complete step-by-step answer:
A matrix is said to be symmetric if its transpose is equal to the matrix itself; i.e. M’ = M, where M is matrix. Given that A and B are symmetric matrices; which means that, A’ = A and B’ = B.
Also we are given that, AB = BA.
We have;
AB = BA – (1)
Now as B’ = B & A’ = A, then substituting this in Right hand side of (1) we get;
AB = B’ A’
\[\Rightarrow \] AB = B’ A’ = (AB)’
So we get;
AB = (AB)’
Hence AB is symmetric.
Now consider \[AB{{A}^{-1}}\],
Now as AB = BA
\[\Rightarrow AB{{A}^{-1}}=BA{{A}^{-1}}\]
And \[A{{A}^{-1}}\] = Identity matrix
\[\Rightarrow AB{{A}^{-1}}=B\]
Applying \[{{A}^{-1}}\] on both sides of above equation we get;
\[\Rightarrow {{A}^{-1}}AB{{A}^{-1}}={{A}^{-1}}B\]
\[\Rightarrow B{{A}^{-1}}={{A}^{-1}}B\] - (2)
Finally consider (\[{{A}^{-1}}B\])’
Using equation (2), we have,
\[\begin{align}
& \Rightarrow \left( {{A}^{-1}}B \right)'=\left( B{{A}^{-1}} \right)' \\
& \Rightarrow \left( {{A}^{-1}}B \right)'=\left( {{A}^{-1}} \right)'B' \\
\end{align}\]
Now because A is symmetric, then \[{{A}^{-1}}\] is also symmetric.
\[\Rightarrow \left( {{A}^{-1}} \right)'={{A}^{-1}}\]
Using this in above equation we get,
\[\Rightarrow \left( {{A}^{-1}}B \right)'=\left( {{A}^{-1}} \right)'B'={{A}^{-1}}B'\]
Now again as B is symmetric \[\Rightarrow B'=B\].
Then, \[\left( {{A}^{-1}}B \right)'=\left( {{A}^{-1}} \right)'B'={{A}^{-1}}B'\].
Now again as B is symmetric \[\Rightarrow B'=B\].
Then, \[\left( {{A}^{-1}}B \right)'={{A}^{-1}}B'={{A}^{-1}}B\].
Hence we get, \[\left( {{A}^{-1}}B \right)'={{A}^{-1}}B\].
Hence, \[{{A}^{-1}}B\] is a symmetric matrix, option (a) is correct.
Note: The possibility of mistake in this question can be where the matrix \[{{A}^{-1}}\] is assumed to be symmetric because A is so.
If A is symmetric then, \[A'=A\].
And \[\left( {{A}^{-1}} \right)'={{\left( A' \right)}^{-1}}={{A}^{-1}}\] as \[A'=A\].
Therefore, when A is a symmetric matrix then \[{{A}^{-1}}\] is also a symmetric matrix. Hence we can use this easily.
Complete step-by-step answer:
A matrix is said to be symmetric if its transpose is equal to the matrix itself; i.e. M’ = M, where M is matrix. Given that A and B are symmetric matrices; which means that, A’ = A and B’ = B.
Also we are given that, AB = BA.
We have;
AB = BA – (1)
Now as B’ = B & A’ = A, then substituting this in Right hand side of (1) we get;
AB = B’ A’
\[\Rightarrow \] AB = B’ A’ = (AB)’
So we get;
AB = (AB)’
Hence AB is symmetric.
Now consider \[AB{{A}^{-1}}\],
Now as AB = BA
\[\Rightarrow AB{{A}^{-1}}=BA{{A}^{-1}}\]
And \[A{{A}^{-1}}\] = Identity matrix
\[\Rightarrow AB{{A}^{-1}}=B\]
Applying \[{{A}^{-1}}\] on both sides of above equation we get;
\[\Rightarrow {{A}^{-1}}AB{{A}^{-1}}={{A}^{-1}}B\]
\[\Rightarrow B{{A}^{-1}}={{A}^{-1}}B\] - (2)
Finally consider (\[{{A}^{-1}}B\])’
Using equation (2), we have,
\[\begin{align}
& \Rightarrow \left( {{A}^{-1}}B \right)'=\left( B{{A}^{-1}} \right)' \\
& \Rightarrow \left( {{A}^{-1}}B \right)'=\left( {{A}^{-1}} \right)'B' \\
\end{align}\]
Now because A is symmetric, then \[{{A}^{-1}}\] is also symmetric.
\[\Rightarrow \left( {{A}^{-1}} \right)'={{A}^{-1}}\]
Using this in above equation we get,
\[\Rightarrow \left( {{A}^{-1}}B \right)'=\left( {{A}^{-1}} \right)'B'={{A}^{-1}}B'\]
Now again as B is symmetric \[\Rightarrow B'=B\].
Then, \[\left( {{A}^{-1}}B \right)'=\left( {{A}^{-1}} \right)'B'={{A}^{-1}}B'\].
Now again as B is symmetric \[\Rightarrow B'=B\].
Then, \[\left( {{A}^{-1}}B \right)'={{A}^{-1}}B'={{A}^{-1}}B\].
Hence we get, \[\left( {{A}^{-1}}B \right)'={{A}^{-1}}B\].
Hence, \[{{A}^{-1}}B\] is a symmetric matrix, option (a) is correct.
Note: The possibility of mistake in this question can be where the matrix \[{{A}^{-1}}\] is assumed to be symmetric because A is so.
If A is symmetric then, \[A'=A\].
And \[\left( {{A}^{-1}} \right)'={{\left( A' \right)}^{-1}}={{A}^{-1}}\] as \[A'=A\].
Therefore, when A is a symmetric matrix then \[{{A}^{-1}}\] is also a symmetric matrix. Hence we can use this easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

