
If A and B are invertible matrices of order 3. $\left| A \right|$=2 and$\left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \dfrac{{ - 1}}{6}$, find $\left| B \right|$
Answer
511.8k+ views
Hint – In this question use the concept that since A and B are invertible hence $\left| A \right|\left| {{A^{ - 1}}} \right| = 1$ and $\left| B \right|\left| {{B^{ - 1}}} \right| = 1$. Then use the property of invertible matrix that ${\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}$and the property of determinant that $\left| {BA} \right| = \left| B \right|\left| A \right|$this will help getting the value of$\left| B \right|$.
Complete step-by-step answer:
If A and B are invertible matrices then the inverse of A and B exist.
$ \Rightarrow \left| A \right|\left| {{A^{ - 1}}} \right| = 1$..................... (1)
And
$ \Rightarrow \left| B \right|\left| {{B^{ - 1}}} \right| = 1$.................... (2)
Now it is given that $\left| A \right| = 2$ ................ (3)
And$\left| {{{\left( {AB} \right)}^{ - 1}}} \right| = - \dfrac{1}{6}$................... (4)
And if A and B are invertible then AB is invertible and, ${\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}$
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right|$
And we all know that $\left| {BA} \right| = \left| B \right|\left| A \right|$ and from equation (4) we have,
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right| = \left| {{B^{ - 1}}} \right|\left| {{A^{ - 1}}} \right| = - \dfrac{1}{6}$............... (5)
Now from equation (1) and (3) we have,
$ \Rightarrow 2\left| {{A^{ - 1}}} \right| = 1$
$ \Rightarrow \left| {{A^{ - 1}}} \right| = \dfrac{1}{2}$
Now from equation (5) we have,
$ \Rightarrow \left| {{B^{ - 1}}} \right|\dfrac{1}{2} = - \dfrac{1}{6}$
$ \Rightarrow \left| {{B^{ - 1}}} \right| = - \dfrac{2}{6} = - \dfrac{1}{3}$
Now from equation (2) we have,
$ \Rightarrow \left| B \right|\left( {\dfrac{{ - 1}}{3}} \right) = 1$
$ \Rightarrow \left| B \right| = - 3$
So this is the required answer.
Note – A matrix (square matrix) is invertible matrix if and only if there exist another matrix B (square matrix) such that $AB = BA = I$ where I is the identity matrix of same order as that of order of A and B. If a square matrix has an invertible matrix then determinant value should be non-zero, or it must be non-singular.
Complete step-by-step answer:
If A and B are invertible matrices then the inverse of A and B exist.
$ \Rightarrow \left| A \right|\left| {{A^{ - 1}}} \right| = 1$..................... (1)
And
$ \Rightarrow \left| B \right|\left| {{B^{ - 1}}} \right| = 1$.................... (2)
Now it is given that $\left| A \right| = 2$ ................ (3)
And$\left| {{{\left( {AB} \right)}^{ - 1}}} \right| = - \dfrac{1}{6}$................... (4)
And if A and B are invertible then AB is invertible and, ${\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}$
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right|$
And we all know that $\left| {BA} \right| = \left| B \right|\left| A \right|$ and from equation (4) we have,
$ \Rightarrow \left| {{{\left( {AB} \right)}^{ - 1}}} \right| = \left| {{B^{ - 1}}{A^{ - 1}}} \right| = \left| {{B^{ - 1}}} \right|\left| {{A^{ - 1}}} \right| = - \dfrac{1}{6}$............... (5)
Now from equation (1) and (3) we have,
$ \Rightarrow 2\left| {{A^{ - 1}}} \right| = 1$
$ \Rightarrow \left| {{A^{ - 1}}} \right| = \dfrac{1}{2}$
Now from equation (5) we have,
$ \Rightarrow \left| {{B^{ - 1}}} \right|\dfrac{1}{2} = - \dfrac{1}{6}$
$ \Rightarrow \left| {{B^{ - 1}}} \right| = - \dfrac{2}{6} = - \dfrac{1}{3}$
Now from equation (2) we have,
$ \Rightarrow \left| B \right|\left( {\dfrac{{ - 1}}{3}} \right) = 1$
$ \Rightarrow \left| B \right| = - 3$
So this is the required answer.
Note – A matrix (square matrix) is invertible matrix if and only if there exist another matrix B (square matrix) such that $AB = BA = I$ where I is the identity matrix of same order as that of order of A and B. If a square matrix has an invertible matrix then determinant value should be non-zero, or it must be non-singular.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
