
If \[2x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}}\] and \[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\], then \[\lambda + k\] is equal to
(A). -23
(B). -24
(C). 26
(D). -26
Answer
576.3k+ views
Hint: To solve the question, at first we have to consider \[{y^{\dfrac{1}{5}}}\] to be ‘p’. Then solving the quadratic equation in terms of ‘p’ we can express y in terms of x. then differentiating y with respect to x we can obtain the expression for \[\dfrac{{dy}}{{dx}}\] and again differentiating with respect to x we will get second order differential equation. Finally comparing the obtained differential equation with the differential equation \[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\] we can get the values of \[\lambda \] and k. Thus the value of \[\lambda + k\] can be determined.
Complete step-by-step answer:
Given that
\[2x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}}\] ... (1)
To solve the above equation consider \[p = {y^{\dfrac{1}{5}}}\], then \[\dfrac{1}{p} = {y^{ - \dfrac{1}{5}}}\]. So substituting these values the eq. (1) reduces to
\[
\Rightarrow 2x = p + \dfrac{1}{p} \\
\Rightarrow {p^2} - 2xp + 1 = 0 \\
\]
…………………………………… (2)
We know that the roots of a quadratic equation \[a{x^2} + bx + c = 0\] is given by
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] …………………………………. (3)
Now applying this formula to eq. (2) we will get
\[
p = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} \\
= \dfrac{{2x \pm \sqrt {4{x^2} - 4 \times 1 \times 1} }}{2} \\
= x \pm \sqrt {{x^2} - 1} \\
\]
……………………..………………. (4)
Substituting the value of \[p = {y^{\dfrac{1}{5}}}\]in eq. (4) we will get,
\[
\Rightarrow {y^{\dfrac{1}{5}}} = x \pm \sqrt {{x^2} - 1} \\
\Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\]
……………………………………… (5)
Now differentiating eq. (5) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \dfrac{d}{{dx}}\left( {x \pm \sqrt {{x^2} - 1} } \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {1 \pm \dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = - 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \cdot \left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\
\]
…………………………………….. (6)
Substituting the value of eq. (5) in eq. (6) we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}\] ………..…………………………. (7)
\[ \Rightarrow \sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}} = - 5y\] …………………………………… (8)
Differentiating eq. (7) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\dfrac{{\sqrt {{x^2} - 1} \left( { - 5\dfrac{{dy}}{{dx}}} \right) - \left( { - 5y} \right)\dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}}}{{{x^2} - 1}}} \right) \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( {\sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}}} \right) - x \times \dfrac{{\left( { - 5y} \right)}}{{\sqrt {{x^2} - 1} }} \\
\]
…………………………………….. (9)
Substituting the value of eq. (7) and (8) in eq. (9) we will get,
\[
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( { - 5y} \right) - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = 25y - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 1.x\dfrac{{dy}}{{dx}} + ( - 25)y = 0 \\
\\
\]
…………………………………….. (10)
But given equation is
\[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\] ……………………………….. (11)
Now comparing eq. (10) and (11) we will get, the values of \[\lambda \] and k which is given by
\[\lambda = 1\] And \[k = - 25\].
Therefore \[\lambda + k = 1 - 25 = - 24\]
The option (B) is correct.
Note: The formula for quotient rule of derivative is given by \[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\].
Complete step-by-step answer:
Given that
\[2x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}}\] ... (1)
To solve the above equation consider \[p = {y^{\dfrac{1}{5}}}\], then \[\dfrac{1}{p} = {y^{ - \dfrac{1}{5}}}\]. So substituting these values the eq. (1) reduces to
\[
\Rightarrow 2x = p + \dfrac{1}{p} \\
\Rightarrow {p^2} - 2xp + 1 = 0 \\
\]
…………………………………… (2)
We know that the roots of a quadratic equation \[a{x^2} + bx + c = 0\] is given by
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] …………………………………. (3)
Now applying this formula to eq. (2) we will get
\[
p = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} \\
= \dfrac{{2x \pm \sqrt {4{x^2} - 4 \times 1 \times 1} }}{2} \\
= x \pm \sqrt {{x^2} - 1} \\
\]
……………………..………………. (4)
Substituting the value of \[p = {y^{\dfrac{1}{5}}}\]in eq. (4) we will get,
\[
\Rightarrow {y^{\dfrac{1}{5}}} = x \pm \sqrt {{x^2} - 1} \\
\Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\]
……………………………………… (5)
Now differentiating eq. (5) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \dfrac{d}{{dx}}\left( {x \pm \sqrt {{x^2} - 1} } \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {1 \pm \dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = - 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \cdot \left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\
\]
…………………………………….. (6)
Substituting the value of eq. (5) in eq. (6) we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}\] ………..…………………………. (7)
\[ \Rightarrow \sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}} = - 5y\] …………………………………… (8)
Differentiating eq. (7) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\dfrac{{\sqrt {{x^2} - 1} \left( { - 5\dfrac{{dy}}{{dx}}} \right) - \left( { - 5y} \right)\dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}}}{{{x^2} - 1}}} \right) \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( {\sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}}} \right) - x \times \dfrac{{\left( { - 5y} \right)}}{{\sqrt {{x^2} - 1} }} \\
\]
…………………………………….. (9)
Substituting the value of eq. (7) and (8) in eq. (9) we will get,
\[
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( { - 5y} \right) - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = 25y - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 1.x\dfrac{{dy}}{{dx}} + ( - 25)y = 0 \\
\\
\]
…………………………………….. (10)
But given equation is
\[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\] ……………………………….. (11)
Now comparing eq. (10) and (11) we will get, the values of \[\lambda \] and k which is given by
\[\lambda = 1\] And \[k = - 25\].
Therefore \[\lambda + k = 1 - 25 = - 24\]
The option (B) is correct.
Note: The formula for quotient rule of derivative is given by \[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

