
If \[2x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}}\] and \[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\], then \[\lambda + k\] is equal to
(A). -23
(B). -24
(C). 26
(D). -26
Answer
591k+ views
Hint: To solve the question, at first we have to consider \[{y^{\dfrac{1}{5}}}\] to be ‘p’. Then solving the quadratic equation in terms of ‘p’ we can express y in terms of x. then differentiating y with respect to x we can obtain the expression for \[\dfrac{{dy}}{{dx}}\] and again differentiating with respect to x we will get second order differential equation. Finally comparing the obtained differential equation with the differential equation \[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\] we can get the values of \[\lambda \] and k. Thus the value of \[\lambda + k\] can be determined.
Complete step-by-step answer:
Given that
\[2x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}}\] ... (1)
To solve the above equation consider \[p = {y^{\dfrac{1}{5}}}\], then \[\dfrac{1}{p} = {y^{ - \dfrac{1}{5}}}\]. So substituting these values the eq. (1) reduces to
\[
\Rightarrow 2x = p + \dfrac{1}{p} \\
\Rightarrow {p^2} - 2xp + 1 = 0 \\
\]
…………………………………… (2)
We know that the roots of a quadratic equation \[a{x^2} + bx + c = 0\] is given by
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] …………………………………. (3)
Now applying this formula to eq. (2) we will get
\[
p = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} \\
= \dfrac{{2x \pm \sqrt {4{x^2} - 4 \times 1 \times 1} }}{2} \\
= x \pm \sqrt {{x^2} - 1} \\
\]
……………………..………………. (4)
Substituting the value of \[p = {y^{\dfrac{1}{5}}}\]in eq. (4) we will get,
\[
\Rightarrow {y^{\dfrac{1}{5}}} = x \pm \sqrt {{x^2} - 1} \\
\Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\]
……………………………………… (5)
Now differentiating eq. (5) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \dfrac{d}{{dx}}\left( {x \pm \sqrt {{x^2} - 1} } \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {1 \pm \dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = - 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \cdot \left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\
\]
…………………………………….. (6)
Substituting the value of eq. (5) in eq. (6) we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}\] ………..…………………………. (7)
\[ \Rightarrow \sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}} = - 5y\] …………………………………… (8)
Differentiating eq. (7) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\dfrac{{\sqrt {{x^2} - 1} \left( { - 5\dfrac{{dy}}{{dx}}} \right) - \left( { - 5y} \right)\dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}}}{{{x^2} - 1}}} \right) \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( {\sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}}} \right) - x \times \dfrac{{\left( { - 5y} \right)}}{{\sqrt {{x^2} - 1} }} \\
\]
…………………………………….. (9)
Substituting the value of eq. (7) and (8) in eq. (9) we will get,
\[
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( { - 5y} \right) - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = 25y - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 1.x\dfrac{{dy}}{{dx}} + ( - 25)y = 0 \\
\\
\]
…………………………………….. (10)
But given equation is
\[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\] ……………………………….. (11)
Now comparing eq. (10) and (11) we will get, the values of \[\lambda \] and k which is given by
\[\lambda = 1\] And \[k = - 25\].
Therefore \[\lambda + k = 1 - 25 = - 24\]
The option (B) is correct.
Note: The formula for quotient rule of derivative is given by \[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\].
Complete step-by-step answer:
Given that
\[2x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}}\] ... (1)
To solve the above equation consider \[p = {y^{\dfrac{1}{5}}}\], then \[\dfrac{1}{p} = {y^{ - \dfrac{1}{5}}}\]. So substituting these values the eq. (1) reduces to
\[
\Rightarrow 2x = p + \dfrac{1}{p} \\
\Rightarrow {p^2} - 2xp + 1 = 0 \\
\]
…………………………………… (2)
We know that the roots of a quadratic equation \[a{x^2} + bx + c = 0\] is given by
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] …………………………………. (3)
Now applying this formula to eq. (2) we will get
\[
p = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} \\
= \dfrac{{2x \pm \sqrt {4{x^2} - 4 \times 1 \times 1} }}{2} \\
= x \pm \sqrt {{x^2} - 1} \\
\]
……………………..………………. (4)
Substituting the value of \[p = {y^{\dfrac{1}{5}}}\]in eq. (4) we will get,
\[
\Rightarrow {y^{\dfrac{1}{5}}} = x \pm \sqrt {{x^2} - 1} \\
\Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\]
……………………………………… (5)
Now differentiating eq. (5) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \dfrac{d}{{dx}}\left( {x \pm \sqrt {{x^2} - 1} } \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {1 \pm \dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = - 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \cdot \left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\
\]
…………………………………….. (6)
Substituting the value of eq. (5) in eq. (6) we will get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}\] ………..…………………………. (7)
\[ \Rightarrow \sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}} = - 5y\] …………………………………… (8)
Differentiating eq. (7) with respect to x on both the sides, we will get
\[
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\dfrac{{\sqrt {{x^2} - 1} \left( { - 5\dfrac{{dy}}{{dx}}} \right) - \left( { - 5y} \right)\dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}}}{{{x^2} - 1}}} \right) \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( {\sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}}} \right) - x \times \dfrac{{\left( { - 5y} \right)}}{{\sqrt {{x^2} - 1} }} \\
\]
…………………………………….. (9)
Substituting the value of eq. (7) and (8) in eq. (9) we will get,
\[
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( { - 5y} \right) - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = 25y - x\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 1.x\dfrac{{dy}}{{dx}} + ( - 25)y = 0 \\
\\
\]
…………………………………….. (10)
But given equation is
\[\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0\] ……………………………….. (11)
Now comparing eq. (10) and (11) we will get, the values of \[\lambda \] and k which is given by
\[\lambda = 1\] And \[k = - 25\].
Therefore \[\lambda + k = 1 - 25 = - 24\]
The option (B) is correct.
Note: The formula for quotient rule of derivative is given by \[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

