
If \[0 < x < 1\] ,then \[\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}} = \]
A) \[\dfrac{x}{{\sqrt {1 + {x^2}} }}\]
B) \[x\]
C) \[x\sqrt {1 + {x^2}} \]
D) \[\sqrt {1 + {x^2}} \]
Answer
509.7k+ views
Hint: In this question, we have to find the value given expression. We proceed by considering, the inverse term \[y = {\cot ^{ - 1}}x\] and solve it to find the value of \[y = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\] and \[y = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}\]. Now we put this value in the expression and simplify to find the required answer. We will also use the fact that \[\cos \left( {{{\cos }^{ - 1}}\theta } \right) = \theta \] and \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \] where \[\theta \] is the angle.
Complete step by step answer:
This question is based on the inverse trigonometric function.
Consider the given question,
We have to find the value of \[\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
Let us consider the inverse trigonometric ratio \[y = {\cot ^{ - 1}}x\],
now taking inverse , we have
This implies , \[x = \cot y\]
Now we find the value of \[\sin y\] and \[\cos y\]
i.e. \[\sin y = \dfrac{1}{{\sqrt {1 + {x^2}} }}\] and \[\cos y = \dfrac{x}{{\sqrt {1 + {x^2}} }}\].
Taking inverse in both the values we get
\[y = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\] and \[y = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}\]
Thus, we have \[y = {\cot ^{ - 1}}x = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }} = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}\]
Thus from the given question, we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
Putting the value from above, we have
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cos }^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) + \sin \left( {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
We know that \[\cos \left( {{{\cos }^{ - 1}}\theta } \right) = \theta \] and \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \],
Hence we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{1}{{\sqrt {1 + {x^2}} }}} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
Taking LCM inside the curly bracket, we get
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {\dfrac{{{x^2} + 1}}{{\sqrt {1 + {x^2}} }}} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
By cancelling on dividing \[1 + {x^2}\] by \[\sqrt {1 + {x^2}} \], we have
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {\sqrt {1 + {x^2}} } \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
On squaring we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {1 + {x^2} - 1} \right]^{\dfrac{1}{2}}}\]
On simplifying we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{x^2}} \right]^{\dfrac{1}{2}}}\]
Hence on simplifying we have,
\[ \Rightarrow x\sqrt {1 + {x^2}} \]
Hence, \[\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}} = x\sqrt {1 + {x^2}} \]. So, option \[C\] is correct.
Note:
To find the value of inverse trigonometric ratio when value of one of the trigonometric ratio is given , we proceed as follow:
For example , we find the value of inverse other inverse trigonometric ratio , when we are given \[\theta = {\cot ^{ - 1}}x\]
This imply \[x = \cot \theta \]
We know that \[\cot \theta = \dfrac{{base}}{{perpendicular}}\]
Now from the right angle triangle , we have
From Pythagoras theorem we have
\[\text{hypotenuse} = \sqrt {1 + {x^2}} \]
Hence, \[\sin \theta = \dfrac{1}{{\sqrt {1 + {x^2}} }}\]
Taking the inverse of the values we get .
Hence , \[\theta = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\] .
Similarly we can find the value of other inverse trigonometric ratios.
Complete step by step answer:
This question is based on the inverse trigonometric function.
Consider the given question,
We have to find the value of \[\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
Let us consider the inverse trigonometric ratio \[y = {\cot ^{ - 1}}x\],
now taking inverse , we have
This implies , \[x = \cot y\]
Now we find the value of \[\sin y\] and \[\cos y\]
i.e. \[\sin y = \dfrac{1}{{\sqrt {1 + {x^2}} }}\] and \[\cos y = \dfrac{x}{{\sqrt {1 + {x^2}} }}\].
Taking inverse in both the values we get
\[y = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\] and \[y = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}\]
Thus, we have \[y = {\cot ^{ - 1}}x = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }} = {\cos ^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}\]
Thus from the given question, we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
Putting the value from above, we have
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cos }^{ - 1}}\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) + \sin \left( {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
We know that \[\cos \left( {{{\cos }^{ - 1}}\theta } \right) = \theta \] and \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \],
Hence we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{1}{{\sqrt {1 + {x^2}} }}} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
Taking LCM inside the curly bracket, we get
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {\dfrac{{{x^2} + 1}}{{\sqrt {1 + {x^2}} }}} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
By cancelling on dividing \[1 + {x^2}\] by \[\sqrt {1 + {x^2}} \], we have
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{{\left\{ {\sqrt {1 + {x^2}} } \right\}}^2} - 1} \right]^{\dfrac{1}{2}}}\]
On squaring we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {1 + {x^2} - 1} \right]^{\dfrac{1}{2}}}\]
On simplifying we have,
\[ \Rightarrow \sqrt {1 + {x^2}} {\left[ {{x^2}} \right]^{\dfrac{1}{2}}}\]
Hence on simplifying we have,
\[ \Rightarrow x\sqrt {1 + {x^2}} \]
Hence, \[\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{\dfrac{1}{2}}} = x\sqrt {1 + {x^2}} \]. So, option \[C\] is correct.
Note:
To find the value of inverse trigonometric ratio when value of one of the trigonometric ratio is given , we proceed as follow:
For example , we find the value of inverse other inverse trigonometric ratio , when we are given \[\theta = {\cot ^{ - 1}}x\]
This imply \[x = \cot \theta \]
We know that \[\cot \theta = \dfrac{{base}}{{perpendicular}}\]
Now from the right angle triangle , we have
From Pythagoras theorem we have
\[\text{hypotenuse} = \sqrt {1 + {x^2}} \]
Hence, \[\sin \theta = \dfrac{1}{{\sqrt {1 + {x^2}} }}\]
Taking the inverse of the values we get .
Hence , \[\theta = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\] .
Similarly we can find the value of other inverse trigonometric ratios.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

