
How do you solve ${{x}^{2}}-24=0$?
Answer
550.5k+ views
Hint: We first keep the variables in one side and factorise the quadratic equation We can also use the identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. We get multiplication of two terms which gives 0. The individual terms will be 0 and from those polynomials we get the roots.
Complete step by step answer:
We need to find the solution of the given equation ${{x}^{2}}-24=0$.
${{x}^{2}}-24=0\Rightarrow {{x}^{2}}=24$.
Taking square root both sides we get $x=\pm \sqrt{24}=\pm 2\sqrt{6}$
We can also use the identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$.
We convert to the equation by taking values as $a=x;b=\sqrt{24}$.
$\begin{align}
& {{x}^{2}}-24=0 \\
& \Rightarrow \left( x+\sqrt{24} \right)\left( x-\sqrt{24} \right)=0 \\
\end{align}$
Multiplication of two terms gives 0. This means at least one individual term to be 0.
We get the values of x as either $x=\sqrt{24}$ or $x=-\sqrt{24}$.
This gives $x=\pm \sqrt{24}=\pm 2\sqrt{6}$.
The given quadratic equation ${{x}^{2}}-24=0$ has 2 solutions and they are $x=\pm 2\sqrt{6}$.
Note: The highest power of the variable or the degree of a polynomial decides the number of roots or the solution of that polynomial. Quadratic equations have 2 roots. Cubic polynomials have 3. It can be both real and imaginary roots.
We can also apply the quadratic equation formula to solve the equation ${{x}^{2}}-24=0$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step by step answer:
We need to find the solution of the given equation ${{x}^{2}}-24=0$.
${{x}^{2}}-24=0\Rightarrow {{x}^{2}}=24$.
Taking square root both sides we get $x=\pm \sqrt{24}=\pm 2\sqrt{6}$
We can also use the identity of $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$.
We convert to the equation by taking values as $a=x;b=\sqrt{24}$.
$\begin{align}
& {{x}^{2}}-24=0 \\
& \Rightarrow \left( x+\sqrt{24} \right)\left( x-\sqrt{24} \right)=0 \\
\end{align}$
Multiplication of two terms gives 0. This means at least one individual term to be 0.
We get the values of x as either $x=\sqrt{24}$ or $x=-\sqrt{24}$.
This gives $x=\pm \sqrt{24}=\pm 2\sqrt{6}$.
The given quadratic equation ${{x}^{2}}-24=0$ has 2 solutions and they are $x=\pm 2\sqrt{6}$.
Note: The highest power of the variable or the degree of a polynomial decides the number of roots or the solution of that polynomial. Quadratic equations have 2 roots. Cubic polynomials have 3. It can be both real and imaginary roots.
We can also apply the quadratic equation formula to solve the equation ${{x}^{2}}-24=0$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

