
How do you solve $ \sin x - \cos x = \dfrac{1}{3} $ ?
Answer
548.7k+ views
Hint: In order to determine the solution of the above trigonometric equation , assume an angle t having value $ {45^ \circ } $ so that $ \tan t = \dfrac{{\sin t}}{{\cos t}} = 1\,\,\,as\,t = {45^ \circ } $ . Try to combine the terms on the LHS into one single trigonometric function including the assumption in the equation, and apply the formula $ \sin A\cos B - \sin B\cos A = \sin \left( {A - B} \right) $ .Since we know that the sine function if always positive in 1st and 2nd quadrant. So there will be two solutions to the given equation. For the first quadrant use the property $ {\sin ^{ - 1}}\left( {\sin x} \right) = x $ and for the 2nd quadrant use $ {\sin ^{ - 1}}\left( {\sin x} \right) = \pi - x $ property of inverse sine.
Complete step by step solution:
We are given a trigonometric equation $ \sin x - \cos x = \dfrac{1}{3} $ .
Here we will try to combine the terms in the LHS part to make it a single trigonometric function.
So, to do so let’s assume an angle $ t $ equal to $ {45^ \circ } $ . Hence the tangent of this angle $ t $ will be equal to 1. And as we know the tangent is the ratio of sine and cosine function, we can write
$ \tan t = \dfrac{{\sin t}}{{\cos t}} = 1\,\,\,as\,t = {45^ \circ } $ ----(1)
Let's rewrite our original equation as
$ \sin x - \left( 1 \right)\cos x = \dfrac{1}{3} $
Since from the result obtained in equation (1) we have $ 1 = \dfrac{{\sin t}}{{\cos t}} $ so replacing this in the above equation we have,
$ \sin x - \left( {\dfrac{{\sin t}}{{\cos t}}} \right)\cos x = \dfrac{1}{3} $
Taking LCM as $ \cos t $
$ \dfrac{{\sin x\cos t - \sin t\cos x}}{{\cos t}} = \dfrac{1}{3} $
Now multiplying $ \cos t $ on both the sides, we get
\[
\cos t\left( {\dfrac{{\sin x\cos t - \sin t\cos x}}{{\cos t}}} \right) = \cos t\left( {\dfrac{1}{3}} \right) \\
\sin x\cos t - \sin t\cos x = \dfrac{{\cos t}}{3} \;
\]
Using the formula $ \sin A\cos B - \sin B\cos A = \sin \left( {A - B} \right) $ by considering A as x and B as t
\[
\sin x\cos t - \sin t\cos x = \dfrac{{\cos t}}{3} \\
\sin \left( {x - t} \right) = \dfrac{{\cos t}}{3} \;
\]
Putting back the value of $ t = {45^ \circ } $
\[\sin \left( {x - {{45}^ \circ }} \right) = \dfrac{{\cos {{45}^ \circ }}}{3}\]
Putting $ \cos \left( {{{45}^ \circ }} \right) = \dfrac{{\sqrt 2 }}{2} $ , we get
\[\sin \left( {x - {{45}^ \circ }} \right) = \dfrac{{\sqrt 2 }}{6}\]
taking inverse of sine on both sides , we get
\[{\sin ^{ - 1}}\left( {\sin \left( {x - {{45}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right)\] ----(1)
Since $ {\sin ^{ - 1}}\left( {\sin } \right) = 1 $ as they both are inverse of each other
\[x - {45^ \circ } = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right)\]
\[
x - {45^ \circ } = {13.59^ \circ } \\
x = {13.59^ \circ } + 45 \;
\]
\[x = {58.59^ \circ }\] ---------(2)
Since the sine function is positive in 1st and 2nd quadrant both.so using the property of inverse sine function that $ {\sin ^{ - 1}}\left( {\sin x} \right) = \pi - x $ where $ x \in \left[ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2}} \right] $ in the equation (1), we get
\[
{\sin ^{ - 1}}\left( {\sin \left( {x - {{45}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right) \\
x - {45^ \circ } = \pi - {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right) \\
x - {45^ \circ } = \pi - {13.59^ \circ } \;
\]
The degree equivalent of $ \pi $ radian is $ {180^ \circ } $
\[
x - {45^ \circ } = {180^ \circ } - {13.59^ \circ } \\
x = {166.41^ \circ } + {45^ \circ } \\
\]
\[x = {211.41^ \circ }\] --------(3)
From equation (2) and (3), we can conclude
\[x = {211.41^ \circ }\,or\,x = {58.59^ \circ }\]
Therefore, the solution to the given trigonometric equation is \[x = {211.41^ \circ }\,or\,x = {58.59^ \circ }\]
So, the correct answer is “ \[x = {211.41^ \circ }\,or\,x = {58.59^ \circ }\] ”.
Note: 1.You can also convert the left-hand side of the equation using rule \[\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right)\]
2. Verify your answer with the use of a calculator.
3. The equivalent degree value of $ \pi $ radian is $ {180^ \circ } $
4. $ \sin A\cos B - \sin B\cos A = \sin \left( {A - B} \right) $
Complete step by step solution:
We are given a trigonometric equation $ \sin x - \cos x = \dfrac{1}{3} $ .
Here we will try to combine the terms in the LHS part to make it a single trigonometric function.
So, to do so let’s assume an angle $ t $ equal to $ {45^ \circ } $ . Hence the tangent of this angle $ t $ will be equal to 1. And as we know the tangent is the ratio of sine and cosine function, we can write
$ \tan t = \dfrac{{\sin t}}{{\cos t}} = 1\,\,\,as\,t = {45^ \circ } $ ----(1)
Let's rewrite our original equation as
$ \sin x - \left( 1 \right)\cos x = \dfrac{1}{3} $
Since from the result obtained in equation (1) we have $ 1 = \dfrac{{\sin t}}{{\cos t}} $ so replacing this in the above equation we have,
$ \sin x - \left( {\dfrac{{\sin t}}{{\cos t}}} \right)\cos x = \dfrac{1}{3} $
Taking LCM as $ \cos t $
$ \dfrac{{\sin x\cos t - \sin t\cos x}}{{\cos t}} = \dfrac{1}{3} $
Now multiplying $ \cos t $ on both the sides, we get
\[
\cos t\left( {\dfrac{{\sin x\cos t - \sin t\cos x}}{{\cos t}}} \right) = \cos t\left( {\dfrac{1}{3}} \right) \\
\sin x\cos t - \sin t\cos x = \dfrac{{\cos t}}{3} \;
\]
Using the formula $ \sin A\cos B - \sin B\cos A = \sin \left( {A - B} \right) $ by considering A as x and B as t
\[
\sin x\cos t - \sin t\cos x = \dfrac{{\cos t}}{3} \\
\sin \left( {x - t} \right) = \dfrac{{\cos t}}{3} \;
\]
Putting back the value of $ t = {45^ \circ } $
\[\sin \left( {x - {{45}^ \circ }} \right) = \dfrac{{\cos {{45}^ \circ }}}{3}\]
Putting $ \cos \left( {{{45}^ \circ }} \right) = \dfrac{{\sqrt 2 }}{2} $ , we get
\[\sin \left( {x - {{45}^ \circ }} \right) = \dfrac{{\sqrt 2 }}{6}\]
taking inverse of sine on both sides , we get
\[{\sin ^{ - 1}}\left( {\sin \left( {x - {{45}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right)\] ----(1)
Since $ {\sin ^{ - 1}}\left( {\sin } \right) = 1 $ as they both are inverse of each other
\[x - {45^ \circ } = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right)\]
\[
x - {45^ \circ } = {13.59^ \circ } \\
x = {13.59^ \circ } + 45 \;
\]
\[x = {58.59^ \circ }\] ---------(2)
Since the sine function is positive in 1st and 2nd quadrant both.so using the property of inverse sine function that $ {\sin ^{ - 1}}\left( {\sin x} \right) = \pi - x $ where $ x \in \left[ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2}} \right] $ in the equation (1), we get
\[
{\sin ^{ - 1}}\left( {\sin \left( {x - {{45}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right) \\
x - {45^ \circ } = \pi - {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right) \\
x - {45^ \circ } = \pi - {13.59^ \circ } \;
\]
The degree equivalent of $ \pi $ radian is $ {180^ \circ } $
\[
x - {45^ \circ } = {180^ \circ } - {13.59^ \circ } \\
x = {166.41^ \circ } + {45^ \circ } \\
\]
\[x = {211.41^ \circ }\] --------(3)
From equation (2) and (3), we can conclude
\[x = {211.41^ \circ }\,or\,x = {58.59^ \circ }\]
Therefore, the solution to the given trigonometric equation is \[x = {211.41^ \circ }\,or\,x = {58.59^ \circ }\]
So, the correct answer is “ \[x = {211.41^ \circ }\,or\,x = {58.59^ \circ }\] ”.
Note: 1.You can also convert the left-hand side of the equation using rule \[\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right)\]
2. Verify your answer with the use of a calculator.
3. The equivalent degree value of $ \pi $ radian is $ {180^ \circ } $
4. $ \sin A\cos B - \sin B\cos A = \sin \left( {A - B} \right) $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

