Answer
Verified
424.5k+ views
Hint:In the given question, we have been asked to solve ln y = 2x + 4. In order to solve the question, first we need to cancel out the log function from the equation. To get rid of a logarithm function from an equation, we need to raise both sides to the same exponent as the base of the logarithms. In the given question to eliminate or cancel out the natural log, we need to raise both sides by the power of ‘e’, then simplify the given equation. In this way we get our required solution.
Complete step by step solution:
We have given that,
\[\Rightarrow \ln y=2x+4\]
To eliminate or cancelling out the natural log, we need to raising both sides by the power of ‘e’,
We get the equation,
\[\Rightarrow {{e}^{\ln \left( y \right)}}={{e}^{2x+4}}\]
\[\Rightarrow y={{e}^{2x+4}}\]
Therefore, the value of \[y={{e}^{2x+4}}\] is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations. Students should always remember that natural log and the exponential functions are the inverse of each other, which means that if we raise the exponential function by the natural log of x, then only we would be able to find the value of ‘x’.
Complete step by step solution:
We have given that,
\[\Rightarrow \ln y=2x+4\]
To eliminate or cancelling out the natural log, we need to raising both sides by the power of ‘e’,
We get the equation,
\[\Rightarrow {{e}^{\ln \left( y \right)}}={{e}^{2x+4}}\]
\[\Rightarrow y={{e}^{2x+4}}\]
Therefore, the value of \[y={{e}^{2x+4}}\] is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations. Students should always remember that natural log and the exponential functions are the inverse of each other, which means that if we raise the exponential function by the natural log of x, then only we would be able to find the value of ‘x’.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE