Answer
Verified
424.5k+ views
Hint:This question is related to logarithm and related concepts. An exponent that is written in a special way is known as a logarithm. Logarithm functions are just opposite or inverse of exponential functions. We can easily express any exponential function in a logarithm form. Similarly, all the logarithm functions can be easily rewritten in exponential form. In order to solve this equation, we have to use some of the logarithm function properties.
Complete step by step solution:
Here, in this question we have to solve ${\log _x}125 = 3$ for the value of $x$.
This question deals with logarithm functions, which are just the inverse of exponential functions. In order to solve this question, we will have to make use of logarithm function properties and rules.
The power rule of logarithm function-
The natural log of $x$ raised to the power of $y$ is times the $\ln$ of $x$.
$\ln \left( {{x^y}} \right) = y \times \ln \left( x \right)$
Now, according to the question,
$ \Rightarrow 125 = {x^3}$------(1)
We know that $125$ can be written as $5 \times 5 \times 5$. So, $125 = {5^3}$.
Using the same in equation (1), we get,
$
\Rightarrow {5^3} = {x^3} \\
\Rightarrow 5 = x \\
$
Therefore, the value of $x$ is $5$.
Note: This problem and similar to these can very easily be solved by making use of different logarithm properties. Students should keep in mind the properties of logarithmic functions. Logarithms are useful when we want to work with large numbers. Logarithm has many uses in real life, such as in electronics, acoustics, earthquake analysis and population prediction. When the base of common logarithm is $10$ then, the base of a natural logarithm is number $e$.
Complete step by step solution:
Here, in this question we have to solve ${\log _x}125 = 3$ for the value of $x$.
This question deals with logarithm functions, which are just the inverse of exponential functions. In order to solve this question, we will have to make use of logarithm function properties and rules.
The power rule of logarithm function-
The natural log of $x$ raised to the power of $y$ is times the $\ln$ of $x$.
$\ln \left( {{x^y}} \right) = y \times \ln \left( x \right)$
Now, according to the question,
$ \Rightarrow 125 = {x^3}$------(1)
We know that $125$ can be written as $5 \times 5 \times 5$. So, $125 = {5^3}$.
Using the same in equation (1), we get,
$
\Rightarrow {5^3} = {x^3} \\
\Rightarrow 5 = x \\
$
Therefore, the value of $x$ is $5$.
Note: This problem and similar to these can very easily be solved by making use of different logarithm properties. Students should keep in mind the properties of logarithmic functions. Logarithms are useful when we want to work with large numbers. Logarithm has many uses in real life, such as in electronics, acoustics, earthquake analysis and population prediction. When the base of common logarithm is $10$ then, the base of a natural logarithm is number $e$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE