Answer
Verified
427.8k+ views
Hint: The problem deals with comparing the powers or indices of two numbers using the basic laws of exponents. Since the two numbers whose powers are to be equated are not the same, we have to first make the bases of exponents the same before comparing the exponents. For making the bases same, we use basic exponent rules.
Complete step by step answer:
Making use of laws of exponents to make the bases the same because exponents can be compared only when the bases are equal. We know that $4 = {2^2}$.
So, ${4^{2x + 1}} = 1024$.
$ \Rightarrow {\left( {{2^2}} \right)^{2x + 1}} = 1024$
Now, using law of exponent ${\left( {{a^n}} \right)^m} = {\left( a \right)^{nm}}$, we get
$ \Rightarrow {\left( 2 \right)^{2\left( {2x + 1} \right)}} = 1024$
On further simplification, we get,
$ \Rightarrow {\left( 2 \right)^{4x + 2}} = 1024$
Now, we know that $1024 = {2^{10}}$.
So, we get, ${\left( 2 \right)^{4x + 2}} = {\left( 2 \right)^{10}}$.
Now we have the same bases on both sides, so now we can equate exponents or powers of both sides of the equation.
Comparing the exponents,
We get,$\left( {4x + 2} \right) = 10$
Using transposition rule and shifting $2$ to right side of the equation reversing the sign following the sign reversal rule, we have,
\[ = \]$4x = 10 - 2$
On solving further, we get,
\[ = \]$4x = 8$
Using transposition rule of algebra and dividing both sides of the equation by $4$,
\[ = \]$x = \dfrac{8}{4}$
Therefore, $x = 2$
So, we get $x = 2$ on solving the given exponential equation by equating exponents after making the bases same using laws of exponents.
Note: We can also solve the given exponential equation by use of logarithms by taking \[\log \] to the base $2$ on both sides of the equation. Then, solving using simple algebraic rules like transposition, we get the same answer as by the former method. So, exponential equations like the one given in the question can be solved by various methods
Complete step by step answer:
Making use of laws of exponents to make the bases the same because exponents can be compared only when the bases are equal. We know that $4 = {2^2}$.
So, ${4^{2x + 1}} = 1024$.
$ \Rightarrow {\left( {{2^2}} \right)^{2x + 1}} = 1024$
Now, using law of exponent ${\left( {{a^n}} \right)^m} = {\left( a \right)^{nm}}$, we get
$ \Rightarrow {\left( 2 \right)^{2\left( {2x + 1} \right)}} = 1024$
On further simplification, we get,
$ \Rightarrow {\left( 2 \right)^{4x + 2}} = 1024$
Now, we know that $1024 = {2^{10}}$.
So, we get, ${\left( 2 \right)^{4x + 2}} = {\left( 2 \right)^{10}}$.
Now we have the same bases on both sides, so now we can equate exponents or powers of both sides of the equation.
Comparing the exponents,
We get,$\left( {4x + 2} \right) = 10$
Using transposition rule and shifting $2$ to right side of the equation reversing the sign following the sign reversal rule, we have,
\[ = \]$4x = 10 - 2$
On solving further, we get,
\[ = \]$4x = 8$
Using transposition rule of algebra and dividing both sides of the equation by $4$,
\[ = \]$x = \dfrac{8}{4}$
Therefore, $x = 2$
So, we get $x = 2$ on solving the given exponential equation by equating exponents after making the bases same using laws of exponents.
Note: We can also solve the given exponential equation by use of logarithms by taking \[\log \] to the base $2$ on both sides of the equation. Then, solving using simple algebraic rules like transposition, we get the same answer as by the former method. So, exponential equations like the one given in the question can be solved by various methods
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it