
How do you solve $ 3{\sec ^2}x - 4 = 0 $ ?
Answer
497.4k+ views
Hint: In order to solve this question ,transpose everything from left-Hand side to right-hand side except $ {\sec ^2}x $ and then put $ {\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}} $ determine the angle whose cosine is equivalent to \[\dfrac{{\sqrt 3 }}{2}\] to get the set of desired solutions.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
Complete step-by-step answer:
We are given a trigonometric expression $ 3{\sec ^2}x - 4 = 0 $
$
\Rightarrow 3{\sec ^2}x - 4 = 0 \\
\Rightarrow 3{\sec ^2}x = 4 \\
\Rightarrow {\sec ^2}x = \dfrac{4}{3} \;
$
As we know that in trigonometry $ {\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}} $ ,putting the above expression
$ \Rightarrow \dfrac{1}{{{{\cos }^2}x}} = \dfrac{4}{3} $
Taking reciprocal on both the sides.
\[
\Rightarrow {\cos ^2}x = \dfrac{3}{4} \\
\Rightarrow \cos x = \sqrt {\dfrac{3}{4}} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{{\sqrt 4 }} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{2}' \\
\Rightarrow x = {\cos ^{ - 1}}\dfrac{{\sqrt 3 }}{2} \;
\]
\[{\cos ^{ - 1}}\dfrac{{\sqrt 3 }}{2}\] = An angle whose cosine is equal to \[\dfrac{{\sqrt 3 }}{2}\] .
Hence, \[x = \dfrac{\pi }{6} + 2n\pi \] where $ n \in Z $ , $ Z $ represents the set of all integers.
Therefore, the solution to expression $ 3{\sec ^2}x - 4 = 0 $ is \[x = \dfrac{\pi }{6} + 2n\pi \] where $ n \in Z $ , $ Z $ represents the set of all integers.
So, the correct answer is “ \[x = \dfrac{\pi }{6} + 2n\pi \] ”.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. $ Z $ represents the set of all integers.
Formula:
$ \sin \left( {A - B} \right) = \sin \left( A \right)\cos \left( B \right) - \sin \left( B \right)\cos \left( A \right) $
Complete step-by-step answer:
We are given a trigonometric expression $ 3{\sec ^2}x - 4 = 0 $
$
\Rightarrow 3{\sec ^2}x - 4 = 0 \\
\Rightarrow 3{\sec ^2}x = 4 \\
\Rightarrow {\sec ^2}x = \dfrac{4}{3} \;
$
As we know that in trigonometry $ {\sec ^2}x = \dfrac{1}{{{{\cos }^2}x}} $ ,putting the above expression
$ \Rightarrow \dfrac{1}{{{{\cos }^2}x}} = \dfrac{4}{3} $
Taking reciprocal on both the sides.
\[
\Rightarrow {\cos ^2}x = \dfrac{3}{4} \\
\Rightarrow \cos x = \sqrt {\dfrac{3}{4}} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{{\sqrt 4 }} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{2}' \\
\Rightarrow x = {\cos ^{ - 1}}\dfrac{{\sqrt 3 }}{2} \;
\]
\[{\cos ^{ - 1}}\dfrac{{\sqrt 3 }}{2}\] = An angle whose cosine is equal to \[\dfrac{{\sqrt 3 }}{2}\] .
Hence, \[x = \dfrac{\pi }{6} + 2n\pi \] where $ n \in Z $ , $ Z $ represents the set of all integers.
Therefore, the solution to expression $ 3{\sec ^2}x - 4 = 0 $ is \[x = \dfrac{\pi }{6} + 2n\pi \] where $ n \in Z $ , $ Z $ represents the set of all integers.
So, the correct answer is “ \[x = \dfrac{\pi }{6} + 2n\pi \] ”.
Note: 1. Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus.
2.One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer.
3. $ Z $ represents the set of all integers.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
