
How do you integrate ln(3x)?
Answer
532.5k+ views
Hint: We will first write the fact that $\int {\ln (nx)dx = } x\ln (nx) - x + C$. Now, we will just put in n = 3 and thus, we will get the required solution to the given question.
Complete Step by Step Solution:
We are given that we are required to integrate ln (3x).
We will first find the integration of ln (nx).
We can write this function as multiple of 1 and ln (nx).
Now, we need to find the value of $\int {1.\ln (nx)dx} $.
Now using the ILATE rule, we have ln (nx) as the first function and 1 as the second function.
Now, we get:-
$ \Rightarrow \int {1.\ln (nx)dx} = x\ln (nx) - \int {\dfrac{n}{{nx}}xdx + C} $
We can write this as follows:-
$ \Rightarrow \int {\ln (nx)dx} = x\ln (nx) - \int {dx + C} $
Now integrating dx on the right hand side in above equation, we will then obtain the following equation:-
$ \Rightarrow \int {\ln (nx)dx} = x\ln (nx) - x + C$
Now, putting in n = 3, we will then obtain the following equation with us:-
$ \Rightarrow \int {\ln (3x)dx = } x\ln (3x) - x + C$
Thus, we have the required answer.
Note:
The students must know the ILATE rule which has been mentioned above.
I stands for Inverse, L stands for Logarithmic, A stands for Algebraic, T stands for Trigonometric and E stands for exponential. This is the sequence in which we take the first function. Therefore, we have taken ln (3x) as the first function and 1 as the second function.
Also, note that if there are two function; first function being f (x) and the second function being g (x).
The integration of f (x) and g (x) is given by the following expression:-
$ \Rightarrow \int {f(x).g(x)dx = f(x)\int {g(x)dx - \int {\left\{ {\left( {\dfrac{d}{{dx}}f(x)} \right)\int {g(x)dx} } \right\}dx + C} } } $
This is the formula that we used above.
The students must note that we may also use the formula directly.
We know that we have a formula for integration of ln (nx) which is given by the following expression:-
$ \Rightarrow \int {\ln (nx)dx = } x\ln (nx) - x + C$
Now, putting in n = 3, we will then obtain the following equation with us:-
$ \Rightarrow \int {\ln (3x)dx = } x\ln (3x) - x + C$
Thus, we have the required answer.
Complete Step by Step Solution:
We are given that we are required to integrate ln (3x).
We will first find the integration of ln (nx).
We can write this function as multiple of 1 and ln (nx).
Now, we need to find the value of $\int {1.\ln (nx)dx} $.
Now using the ILATE rule, we have ln (nx) as the first function and 1 as the second function.
Now, we get:-
$ \Rightarrow \int {1.\ln (nx)dx} = x\ln (nx) - \int {\dfrac{n}{{nx}}xdx + C} $
We can write this as follows:-
$ \Rightarrow \int {\ln (nx)dx} = x\ln (nx) - \int {dx + C} $
Now integrating dx on the right hand side in above equation, we will then obtain the following equation:-
$ \Rightarrow \int {\ln (nx)dx} = x\ln (nx) - x + C$
Now, putting in n = 3, we will then obtain the following equation with us:-
$ \Rightarrow \int {\ln (3x)dx = } x\ln (3x) - x + C$
Thus, we have the required answer.
Note:
The students must know the ILATE rule which has been mentioned above.
I stands for Inverse, L stands for Logarithmic, A stands for Algebraic, T stands for Trigonometric and E stands for exponential. This is the sequence in which we take the first function. Therefore, we have taken ln (3x) as the first function and 1 as the second function.
Also, note that if there are two function; first function being f (x) and the second function being g (x).
The integration of f (x) and g (x) is given by the following expression:-
$ \Rightarrow \int {f(x).g(x)dx = f(x)\int {g(x)dx - \int {\left\{ {\left( {\dfrac{d}{{dx}}f(x)} \right)\int {g(x)dx} } \right\}dx + C} } } $
This is the formula that we used above.
The students must note that we may also use the formula directly.
We know that we have a formula for integration of ln (nx) which is given by the following expression:-
$ \Rightarrow \int {\ln (nx)dx = } x\ln (nx) - x + C$
Now, putting in n = 3, we will then obtain the following equation with us:-
$ \Rightarrow \int {\ln (3x)dx = } x\ln (3x) - x + C$
Thus, we have the required answer.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

