
How do you integrate $\ln ({x^2} - x + 2)dx$?
Answer
531.9k+ views
Hint: We are asked to integrate the function $\ln ({x^2} - x + 2)dx$, where $\ln $ represents the natural logarithm to the base $e$. Firstly, we make use of methods of integration by parts. The method is given by $\int {udv = uv - \int {vdu} } $. We take here $u = \ln ({x^2} - x + 2)$ and $dv = 1$ to solve. Then we make use of some properties of integration to simplify the problem and obtain the solution.
Complete step by step solution:
In this question we need to integrate a function $\ln ({x^2} - x + 2)dx$.
Note that logarithm is an inverse of an exponential function. Here $\ln $represents the natural logarithm to the base $e$.
To solve the above problem we use the method of integration by parts.
The method is given by $\int {udv = uv - \int {vdu} } $ …… (1)
Take $u = \ln ({x^2} - x + 2)$
Differentiating u we obtain $du$.
$du = \dfrac{{2x - 1}}{{{x^2} - x + 2}}$
Take $dv = 1$.
Integrate $dv$ to obtain v.
$\int {dv = \int {1dx} } $
$ \Rightarrow v = x$.
Now substituting in the equation (1), we get,
$\int {\ln ({x^2}} - x + 2) \cdot 1dx = \ln ({x^2} - x + 2)x - \int {x\dfrac{{2x - 1}}{{{x^2} - x + 2}}} dx$
$ \Rightarrow \int {\ln ({x^2}} - x + 2)dx = x \cdot \ln ({x^2} - x + 2) - \int {\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}} dx$ …… (2)
Now we simplify the term $\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}$.
Express $ - x$ as $ - 2x + x$, we get,
$ \Rightarrow \dfrac{{2{x^2} - 2x + x}}{{{x^2} - x + 2}}$
Now add and subtract by 4 in the numerator we get,
$ \Rightarrow \dfrac{{2{x^2} - 2x + 4 + x - 4}}{{{x^2} - x + 2}}$
Now we split the above term as,
$ \Rightarrow \dfrac{{2({x^2} - x + 2)}}{{{x^2} - x + 2}} + \dfrac{{x - 4}}{{{x^2} - x + 2}}$
$ \Rightarrow 2 + \dfrac{{x - 4}}{{{x^2} - x + 2}}$
Now $\int {\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}dx} = \int {2 + } \dfrac{{x - 4}}{{{x^2} - x + 2}}dx$
$ \Rightarrow \int {2dx + \int {\dfrac{{x - 4}}{{{x^2} - x + 2}}} } dx$ …… (3)
Now we simplify the term $\dfrac{{x - 4}}{{{x^2} - x + 2}}$
We try to convert it as $\dfrac{{f'(x)}}{{f(x)}}$.
$\dfrac{{x - 4}}{{{x^2} - x + 2}} = \dfrac{{\dfrac{1}{2}(2x - 8)}}{{{x^2} - x + 2}}$
$ \Rightarrow \dfrac{{\dfrac{1}{2}(2x - 1) - \dfrac{7}{2}}}{{{x^2} - x + 2}}$
Now splitting the terms we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2}(2x - 1)}}{{{x^2} - x + 2}} - \dfrac{7}{2}\dfrac{1}{{{x^2} - x + 2}}$
Substituting this in the equation (3), we get,
$ \Rightarrow \int {2dx + \int {\left( {\dfrac{{\dfrac{1}{2}(2x - 1)}}{{{x^2} - x + 2}} - \dfrac{7}{2}\dfrac{1}{{{x^2} - x + 2}}} \right)dx} } $
Splitting the integration in the second term we get,
$ \Rightarrow \int {2dx + } \int {\dfrac{{\dfrac{1}{2}(2x - 1)}}{{{x^2} - x + 2}}} dx - \int {\dfrac{7}{2}\dfrac{1}{{{x^2} - x + 2}}dx} $
Now integrating we get,
$ \Rightarrow 2x + \dfrac{1}{2}\ln ({x^2} - x + 2) - \dfrac{7}{2}\int {\dfrac{1}{{{x^2} - x + 2}}dx} $
Substituting in the equation (2) we get,
$\int {\ln ({x^2}} - x + 2)dx = x \cdot \ln ({x^2} - x + 2) - \int {\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}} dx$
$ \Rightarrow x\ln ({x^2} - x + 2) - \left( {2x + \dfrac{1}{2}\ln ({x^2} - x + 2) - \dfrac{7}{2}\int {\dfrac{1}{{{x^2} - x + 2}}dx} } \right)$
Now combining the like terms we get,
$ \Rightarrow \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \dfrac{7}{2}\int {\dfrac{1}{{{x^2} - x + 2}}dx} $ …… (4)
Now we simplify the term $\int {\dfrac{1}{{{x^2} - x + 2}}dx} $.
We try to convert the denominator as factors using completing squares.
Consider the quadratic equation ${x^2} - x + 2$.
Add and subtract $\dfrac{1}{4}$ we get,
$ \Rightarrow {x^2} - x + \dfrac{1}{4} + 2 - \dfrac{1}{4}$
$ \Rightarrow {\left( {x - \dfrac{1}{2}} \right)^2} + \dfrac{7}{4}$
$\therefore \int {\dfrac{1}{{{x^2} - x + 2}}dx} = \int {\dfrac{1}{{{{\left( {x - \dfrac{1}{2}} \right)}^2} + \dfrac{7}{4}}}} dx$ …… (5)
Take ${\left( {x - \dfrac{1}{2}} \right)^2} = \dfrac{7}{4}{\tan ^2}\theta $
$ \Rightarrow {\left( {x - \dfrac{1}{2}} \right)^{}} = \dfrac{{\sqrt 7 }}{2}\tan \theta $ …… (6)
$ \Rightarrow \theta = \arctan \dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)$ …… (7)
Differentiating (6) we get,
$ \Rightarrow dx = \dfrac{{\sqrt 7 }}{2}{\sec ^2}\theta d\theta $
Hence the equation (5) becomes,
$ \Rightarrow \int {\dfrac{1}{{\dfrac{7}{4}{{\tan }^2}\theta + \dfrac{7}{4}}}} \cdot \dfrac{{\sqrt 7 }}{2}{\sec ^2}\theta d\theta $
$ \Rightarrow \dfrac{{\sqrt 7 }}{2}\int {\dfrac{1}{{\dfrac{7}{4}({{\tan }^2}\theta + 1)}}} \cdot {\sec ^2}\theta d\theta $
We know the trigonometric identity $1 + {\tan ^2}\theta = {\sec ^2}\theta $.
$ \Rightarrow \dfrac{{\sqrt 7 }}{2}\int {\dfrac{{{{\sec }^2}\theta }}{{\dfrac{7}{4}({{\sec }^2}\theta )}}d\theta } $
Cancelling the terms and taking out the constant term in the denominator out of integration we get,
$ \Rightarrow \dfrac{{\sqrt 7 }}{2} \cdot \dfrac{2}{7}\int {d\theta } $
Note that $7 = \sqrt 7 \times \sqrt 7 $
$ \Rightarrow \dfrac{{\sqrt 7 }}{2} \cdot \dfrac{2}{{\sqrt 7 \times \sqrt 7 }}\int {d\theta } $
$ \Rightarrow \dfrac{2}{{\sqrt 7 }}\int {d\theta } $
$ \Rightarrow \dfrac{2}{{\sqrt 7 }}\theta $
Substituting the value $\theta $ from the equation (7), $\theta = \arctan \dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)$ we get,
$ \Rightarrow \dfrac{2}{{\sqrt 7 }}\arctan \left( {\dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)} \right)$
Hence The equation (4) becomes,
$ \Rightarrow \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \dfrac{7}{2} \cdot \dfrac{2}{{\sqrt 7 }}\arctan \left( {\dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)} \right)$
$ \Rightarrow \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \sqrt 7 \arctan \left( {\dfrac{{2x - 1}}{{\sqrt 7 }}} \right)$
Hence $\int {\ln ({x^2}} - x + 2)dx = \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \sqrt 7 \arctan \left( {\dfrac{{2x - 1}}{{\sqrt 7 }}} \right)$.
Note:
Remember to make use of method of integration of parts which is given by,
$\int {udv = uv - \int {vdu} } $.
It is important to make the right choice of u and v. Students may go wrong in this. We have to make a clever choice so that the equation gets simplified.
Also sometimes the terms will be complicated while integrating. In this situation we make use of a substitution method or any other which gives us the required solution.
Complete step by step solution:
In this question we need to integrate a function $\ln ({x^2} - x + 2)dx$.
Note that logarithm is an inverse of an exponential function. Here $\ln $represents the natural logarithm to the base $e$.
To solve the above problem we use the method of integration by parts.
The method is given by $\int {udv = uv - \int {vdu} } $ …… (1)
Take $u = \ln ({x^2} - x + 2)$
Differentiating u we obtain $du$.
$du = \dfrac{{2x - 1}}{{{x^2} - x + 2}}$
Take $dv = 1$.
Integrate $dv$ to obtain v.
$\int {dv = \int {1dx} } $
$ \Rightarrow v = x$.
Now substituting in the equation (1), we get,
$\int {\ln ({x^2}} - x + 2) \cdot 1dx = \ln ({x^2} - x + 2)x - \int {x\dfrac{{2x - 1}}{{{x^2} - x + 2}}} dx$
$ \Rightarrow \int {\ln ({x^2}} - x + 2)dx = x \cdot \ln ({x^2} - x + 2) - \int {\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}} dx$ …… (2)
Now we simplify the term $\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}$.
Express $ - x$ as $ - 2x + x$, we get,
$ \Rightarrow \dfrac{{2{x^2} - 2x + x}}{{{x^2} - x + 2}}$
Now add and subtract by 4 in the numerator we get,
$ \Rightarrow \dfrac{{2{x^2} - 2x + 4 + x - 4}}{{{x^2} - x + 2}}$
Now we split the above term as,
$ \Rightarrow \dfrac{{2({x^2} - x + 2)}}{{{x^2} - x + 2}} + \dfrac{{x - 4}}{{{x^2} - x + 2}}$
$ \Rightarrow 2 + \dfrac{{x - 4}}{{{x^2} - x + 2}}$
Now $\int {\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}dx} = \int {2 + } \dfrac{{x - 4}}{{{x^2} - x + 2}}dx$
$ \Rightarrow \int {2dx + \int {\dfrac{{x - 4}}{{{x^2} - x + 2}}} } dx$ …… (3)
Now we simplify the term $\dfrac{{x - 4}}{{{x^2} - x + 2}}$
We try to convert it as $\dfrac{{f'(x)}}{{f(x)}}$.
$\dfrac{{x - 4}}{{{x^2} - x + 2}} = \dfrac{{\dfrac{1}{2}(2x - 8)}}{{{x^2} - x + 2}}$
$ \Rightarrow \dfrac{{\dfrac{1}{2}(2x - 1) - \dfrac{7}{2}}}{{{x^2} - x + 2}}$
Now splitting the terms we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2}(2x - 1)}}{{{x^2} - x + 2}} - \dfrac{7}{2}\dfrac{1}{{{x^2} - x + 2}}$
Substituting this in the equation (3), we get,
$ \Rightarrow \int {2dx + \int {\left( {\dfrac{{\dfrac{1}{2}(2x - 1)}}{{{x^2} - x + 2}} - \dfrac{7}{2}\dfrac{1}{{{x^2} - x + 2}}} \right)dx} } $
Splitting the integration in the second term we get,
$ \Rightarrow \int {2dx + } \int {\dfrac{{\dfrac{1}{2}(2x - 1)}}{{{x^2} - x + 2}}} dx - \int {\dfrac{7}{2}\dfrac{1}{{{x^2} - x + 2}}dx} $
Now integrating we get,
$ \Rightarrow 2x + \dfrac{1}{2}\ln ({x^2} - x + 2) - \dfrac{7}{2}\int {\dfrac{1}{{{x^2} - x + 2}}dx} $
Substituting in the equation (2) we get,
$\int {\ln ({x^2}} - x + 2)dx = x \cdot \ln ({x^2} - x + 2) - \int {\dfrac{{2{x^2} - x}}{{{x^2} - x + 2}}} dx$
$ \Rightarrow x\ln ({x^2} - x + 2) - \left( {2x + \dfrac{1}{2}\ln ({x^2} - x + 2) - \dfrac{7}{2}\int {\dfrac{1}{{{x^2} - x + 2}}dx} } \right)$
Now combining the like terms we get,
$ \Rightarrow \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \dfrac{7}{2}\int {\dfrac{1}{{{x^2} - x + 2}}dx} $ …… (4)
Now we simplify the term $\int {\dfrac{1}{{{x^2} - x + 2}}dx} $.
We try to convert the denominator as factors using completing squares.
Consider the quadratic equation ${x^2} - x + 2$.
Add and subtract $\dfrac{1}{4}$ we get,
$ \Rightarrow {x^2} - x + \dfrac{1}{4} + 2 - \dfrac{1}{4}$
$ \Rightarrow {\left( {x - \dfrac{1}{2}} \right)^2} + \dfrac{7}{4}$
$\therefore \int {\dfrac{1}{{{x^2} - x + 2}}dx} = \int {\dfrac{1}{{{{\left( {x - \dfrac{1}{2}} \right)}^2} + \dfrac{7}{4}}}} dx$ …… (5)
Take ${\left( {x - \dfrac{1}{2}} \right)^2} = \dfrac{7}{4}{\tan ^2}\theta $
$ \Rightarrow {\left( {x - \dfrac{1}{2}} \right)^{}} = \dfrac{{\sqrt 7 }}{2}\tan \theta $ …… (6)
$ \Rightarrow \theta = \arctan \dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)$ …… (7)
Differentiating (6) we get,
$ \Rightarrow dx = \dfrac{{\sqrt 7 }}{2}{\sec ^2}\theta d\theta $
Hence the equation (5) becomes,
$ \Rightarrow \int {\dfrac{1}{{\dfrac{7}{4}{{\tan }^2}\theta + \dfrac{7}{4}}}} \cdot \dfrac{{\sqrt 7 }}{2}{\sec ^2}\theta d\theta $
$ \Rightarrow \dfrac{{\sqrt 7 }}{2}\int {\dfrac{1}{{\dfrac{7}{4}({{\tan }^2}\theta + 1)}}} \cdot {\sec ^2}\theta d\theta $
We know the trigonometric identity $1 + {\tan ^2}\theta = {\sec ^2}\theta $.
$ \Rightarrow \dfrac{{\sqrt 7 }}{2}\int {\dfrac{{{{\sec }^2}\theta }}{{\dfrac{7}{4}({{\sec }^2}\theta )}}d\theta } $
Cancelling the terms and taking out the constant term in the denominator out of integration we get,
$ \Rightarrow \dfrac{{\sqrt 7 }}{2} \cdot \dfrac{2}{7}\int {d\theta } $
Note that $7 = \sqrt 7 \times \sqrt 7 $
$ \Rightarrow \dfrac{{\sqrt 7 }}{2} \cdot \dfrac{2}{{\sqrt 7 \times \sqrt 7 }}\int {d\theta } $
$ \Rightarrow \dfrac{2}{{\sqrt 7 }}\int {d\theta } $
$ \Rightarrow \dfrac{2}{{\sqrt 7 }}\theta $
Substituting the value $\theta $ from the equation (7), $\theta = \arctan \dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)$ we get,
$ \Rightarrow \dfrac{2}{{\sqrt 7 }}\arctan \left( {\dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)} \right)$
Hence The equation (4) becomes,
$ \Rightarrow \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \dfrac{7}{2} \cdot \dfrac{2}{{\sqrt 7 }}\arctan \left( {\dfrac{2}{{\sqrt 7 }}\left( {x - \dfrac{1}{2}} \right)} \right)$
$ \Rightarrow \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \sqrt 7 \arctan \left( {\dfrac{{2x - 1}}{{\sqrt 7 }}} \right)$
Hence $\int {\ln ({x^2}} - x + 2)dx = \left( {x - \dfrac{1}{2}} \right)\ln ({x^2} - x + 2) - 2x + \sqrt 7 \arctan \left( {\dfrac{{2x - 1}}{{\sqrt 7 }}} \right)$.
Note:
Remember to make use of method of integration of parts which is given by,
$\int {udv = uv - \int {vdu} } $.
It is important to make the right choice of u and v. Students may go wrong in this. We have to make a clever choice so that the equation gets simplified.
Also sometimes the terms will be complicated while integrating. In this situation we make use of a substitution method or any other which gives us the required solution.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

