Answer
Verified
423.9k+ views
Hint: In this question we need to find the factor of algebraic expression $16{x^4} - 81{y^4}$. Given algebraic expression is of two variables $x$ and $y$. To solve this question we need to use the following basic algebraic identities such as ${a^2} - {b^2} = (a + b)(a - b)$. To solve this question we need to know the square root of a number or how to find the square root of a number. To solve this we also need to know the laws of exponents.
Complete step by step solution:
Let us try to solve this question in which we are asked to find the factor of the given algebraic expression $16{x^4} - 81{y^4}$. To find the factors of the equation we manipulate the given algebraic expression by using our knowledge of exponents, so that we can apply the algebraic identity ${a^2} - {b^2} = (a + b)(a - b)$. So, let’s come back to the question.
We have to find factor of $16{x^4} - 81{y^4}$, this can be written as
$16{x^4} - 81{y^4} = {(4{x^2})^2} - {(9{y^2})^2}$ $(1)$
Because we know that from law of exponents ${a^{b \cdot c}} = {({a^b})^c}$ and also we know that $16 = {4^2}$ and $81 = {9^2}$
Now, applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation $(1)$, we get
${(4{x^2})^2} - {(9{x^2})^2} = (4{x^2} - 9{x^2})(4{x^2} + 9{y^2})$ $(2)$
Now, again applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation (2), we get
$(4{x^2} - 9{x^2})(4{x^2} + 9{y^2}) = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$ $(3)$
Equation $(3)$ cannot be further factorized because this equation has no more linear factors.
Hence the factor of algebraic expression $16{x^4} - 81{y^4} = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$.
Note: For solving this type of question in which we are asked to find the factor of algebraic expression having the knowledge of some basic algebraic identities are must such as ${a^2} - {b^2} = (a + b)(a - b)$,
${(a + b)^2} = {a^2} + 2ab + {b^2}$ etc.
To solve these types of questions we just have to break the expression using knowledge of exponents and apply known algebraic identities.
Complete step by step solution:
Let us try to solve this question in which we are asked to find the factor of the given algebraic expression $16{x^4} - 81{y^4}$. To find the factors of the equation we manipulate the given algebraic expression by using our knowledge of exponents, so that we can apply the algebraic identity ${a^2} - {b^2} = (a + b)(a - b)$. So, let’s come back to the question.
We have to find factor of $16{x^4} - 81{y^4}$, this can be written as
$16{x^4} - 81{y^4} = {(4{x^2})^2} - {(9{y^2})^2}$ $(1)$
Because we know that from law of exponents ${a^{b \cdot c}} = {({a^b})^c}$ and also we know that $16 = {4^2}$ and $81 = {9^2}$
Now, applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation $(1)$, we get
${(4{x^2})^2} - {(9{x^2})^2} = (4{x^2} - 9{x^2})(4{x^2} + 9{y^2})$ $(2)$
Now, again applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation (2), we get
$(4{x^2} - 9{x^2})(4{x^2} + 9{y^2}) = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$ $(3)$
Equation $(3)$ cannot be further factorized because this equation has no more linear factors.
Hence the factor of algebraic expression $16{x^4} - 81{y^4} = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$.
Note: For solving this type of question in which we are asked to find the factor of algebraic expression having the knowledge of some basic algebraic identities are must such as ${a^2} - {b^2} = (a + b)(a - b)$,
${(a + b)^2} = {a^2} + 2ab + {b^2}$ etc.
To solve these types of questions we just have to break the expression using knowledge of exponents and apply known algebraic identities.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE