
How do you evaluate \[{\log _{216}}6\] ?
Answer
537.9k+ views
Hint: Here in this question we are going to solve this function. The function is of the form of a logarithmic function. The logarithmic function is represented as \[{\log _b}a\] , where b is a base and a is a number either it is a fraction or a whole number. By using the properties of logarithmic functions, we are going to simplify the question.
Complete step by step solution:
The logarithmic function is an inverse of exponential function. Here we have to solve the above logarithmic function. This logarithmic function contains 216 as a base. Hence by applying the properties of logarithmic functions we solve this function.
Now consider the given function \[{\log _{216}}6\]
When the logarithmic function is defined as \[{\log _b}a\] , by the property of logarithmic function it is written as \[\dfrac{{\log a}}{{\log b}}\]
Therefore the given function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log 216}}\]
Since it is just log so it is a common logarithm.
Let we factorise the number 216.
Therefore the number 216 is written as \[6 \times 6 \times 6\] . The number 6 is multiplied thrice. Therefore the number is written in the form of exponential. So it is written as \[{6^3}\]
So the above function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log {6^3}}}\]
In the denominator of the above function we have the log function is in the form \[\log {a^n}\] , so we have property \[\log {a^n} = n\log a\] . By applying the property we have
\[ \Rightarrow \dfrac{{\log 6}}{{3\log 6}}\]
In the numerator and the denominator we have log6 so we can cancel it. So we have
\[ \Rightarrow \dfrac{1}{3}\]
Hence we have evaluated the function and obtained an answer.
Therefore \[{\log _{216}}6 = \dfrac{1}{3}\]
So, the correct answer is “$\dfrac{1}{3}$”.
Note: The logarithmic functions have many properties. These properties are based on the exponential number and on the arithmetic operation like addition, subtraction, multiplication and division. So by using these properties we can solve the logarithmic properties. We have different values of logarithms for different base values.
Complete step by step solution:
The logarithmic function is an inverse of exponential function. Here we have to solve the above logarithmic function. This logarithmic function contains 216 as a base. Hence by applying the properties of logarithmic functions we solve this function.
Now consider the given function \[{\log _{216}}6\]
When the logarithmic function is defined as \[{\log _b}a\] , by the property of logarithmic function it is written as \[\dfrac{{\log a}}{{\log b}}\]
Therefore the given function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log 216}}\]
Since it is just log so it is a common logarithm.
Let we factorise the number 216.
Therefore the number 216 is written as \[6 \times 6 \times 6\] . The number 6 is multiplied thrice. Therefore the number is written in the form of exponential. So it is written as \[{6^3}\]
So the above function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log {6^3}}}\]
In the denominator of the above function we have the log function is in the form \[\log {a^n}\] , so we have property \[\log {a^n} = n\log a\] . By applying the property we have
\[ \Rightarrow \dfrac{{\log 6}}{{3\log 6}}\]
In the numerator and the denominator we have log6 so we can cancel it. So we have
\[ \Rightarrow \dfrac{1}{3}\]
Hence we have evaluated the function and obtained an answer.
Therefore \[{\log _{216}}6 = \dfrac{1}{3}\]
So, the correct answer is “$\dfrac{1}{3}$”.
Note: The logarithmic functions have many properties. These properties are based on the exponential number and on the arithmetic operation like addition, subtraction, multiplication and division. So by using these properties we can solve the logarithmic properties. We have different values of logarithms for different base values.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

