
How do you divide $\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}$?
Answer
548.1k+ views
Hint: We have two quadratic equations in the denominator and the numerator. We factor the numerator using different processes. From them we eliminate the common factor if there is any. We find the simplified form the expression.
Complete step by step solution:
We have been given the division of two quadratic equations. We need to find the factor of the equations.
The two quadratic equations are ${{y}^{4}}+9{{y}^{2}}+20$ and ${{y}^{2}}+4$.
We use the vanishing method to solve the numerator.
We find the value of ${{y}^{2}}=a$ for which the function $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20=0$.
We take ${{y}^{2}}=a=-4$. We can see $f\left( -4 \right)={{\left( -4 \right)}^{2}}+9\times \left( -4 \right)+20=16-36+20=0$.
So, the factor of the $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20$ will be the function $\left( {{y}^{2}}+4 \right)$.
Therefore, the term $\left( {{y}^{2}}+4 \right)$ is a factor of the polynomial ${{y}^{4}}+9{{y}^{2}}+20$.
So, \[{{y}^{4}}+9{{y}^{2}}+20=\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)\].
Now we put the factored values for the two equations.
We get \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}\].
Now we can see in the denominator and the numerator the common factor is $\left( {{y}^{2}}+4 \right)$.
We can eliminate the factor from both denominator and the numerator.
So, \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}=\left( {{y}^{2}}+5 \right)\].
Therefore, the simplified form of $\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}$ is $\left( {{y}^{2}}+5 \right)$.
Note: We can also factorise the quadratic equations using grouping method.
In case of ${{y}^{4}}+9{{y}^{2}}+20$, we break the middle term $9{{y}^{2}}$ into two parts of $5{{y}^{2}}$ and $4{{y}^{2}}$.
So, ${{y}^{4}}+9{{y}^{2}}+20={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20$.
Factorising we get
$\begin{align}
& {{y}^{4}}+9{{y}^{2}}+20 \\
& ={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20 \\
& ={{y}^{2}}\left( {{y}^{2}}+5 \right)+4\left( {{y}^{2}}+5 \right) \\
& =\left( {{y}^{2}}+5 \right)\left( {{y}^{2}}+4 \right) \\
\end{align}$
Complete step by step solution:
We have been given the division of two quadratic equations. We need to find the factor of the equations.
The two quadratic equations are ${{y}^{4}}+9{{y}^{2}}+20$ and ${{y}^{2}}+4$.
We use the vanishing method to solve the numerator.
We find the value of ${{y}^{2}}=a$ for which the function $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20=0$.
We take ${{y}^{2}}=a=-4$. We can see $f\left( -4 \right)={{\left( -4 \right)}^{2}}+9\times \left( -4 \right)+20=16-36+20=0$.
So, the factor of the $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20$ will be the function $\left( {{y}^{2}}+4 \right)$.
Therefore, the term $\left( {{y}^{2}}+4 \right)$ is a factor of the polynomial ${{y}^{4}}+9{{y}^{2}}+20$.
So, \[{{y}^{4}}+9{{y}^{2}}+20=\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)\].
Now we put the factored values for the two equations.
We get \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}\].
Now we can see in the denominator and the numerator the common factor is $\left( {{y}^{2}}+4 \right)$.
We can eliminate the factor from both denominator and the numerator.
So, \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}=\left( {{y}^{2}}+5 \right)\].
Therefore, the simplified form of $\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}$ is $\left( {{y}^{2}}+5 \right)$.
Note: We can also factorise the quadratic equations using grouping method.
In case of ${{y}^{4}}+9{{y}^{2}}+20$, we break the middle term $9{{y}^{2}}$ into two parts of $5{{y}^{2}}$ and $4{{y}^{2}}$.
So, ${{y}^{4}}+9{{y}^{2}}+20={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20$.
Factorising we get
$\begin{align}
& {{y}^{4}}+9{{y}^{2}}+20 \\
& ={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20 \\
& ={{y}^{2}}\left( {{y}^{2}}+5 \right)+4\left( {{y}^{2}}+5 \right) \\
& =\left( {{y}^{2}}+5 \right)\left( {{y}^{2}}+4 \right) \\
\end{align}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

Define development

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

Give 5 examples of refraction of light in daily life

The voting age has been reduced from 21 to 18 by the class 9 social science CBSE

