
How do you divide $\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}$?
Answer
449.7k+ views
Hint: We have two quadratic equations in the denominator and the numerator. We factor the numerator using different processes. From them we eliminate the common factor if there is any. We find the simplified form the expression.
Complete step by step solution:
We have been given the division of two quadratic equations. We need to find the factor of the equations.
The two quadratic equations are ${{y}^{4}}+9{{y}^{2}}+20$ and ${{y}^{2}}+4$.
We use the vanishing method to solve the numerator.
We find the value of ${{y}^{2}}=a$ for which the function $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20=0$.
We take ${{y}^{2}}=a=-4$. We can see $f\left( -4 \right)={{\left( -4 \right)}^{2}}+9\times \left( -4 \right)+20=16-36+20=0$.
So, the factor of the $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20$ will be the function $\left( {{y}^{2}}+4 \right)$.
Therefore, the term $\left( {{y}^{2}}+4 \right)$ is a factor of the polynomial ${{y}^{4}}+9{{y}^{2}}+20$.
So, \[{{y}^{4}}+9{{y}^{2}}+20=\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)\].
Now we put the factored values for the two equations.
We get \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}\].
Now we can see in the denominator and the numerator the common factor is $\left( {{y}^{2}}+4 \right)$.
We can eliminate the factor from both denominator and the numerator.
So, \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}=\left( {{y}^{2}}+5 \right)\].
Therefore, the simplified form of $\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}$ is $\left( {{y}^{2}}+5 \right)$.
Note: We can also factorise the quadratic equations using grouping method.
In case of ${{y}^{4}}+9{{y}^{2}}+20$, we break the middle term $9{{y}^{2}}$ into two parts of $5{{y}^{2}}$ and $4{{y}^{2}}$.
So, ${{y}^{4}}+9{{y}^{2}}+20={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20$.
Factorising we get
$\begin{align}
& {{y}^{4}}+9{{y}^{2}}+20 \\
& ={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20 \\
& ={{y}^{2}}\left( {{y}^{2}}+5 \right)+4\left( {{y}^{2}}+5 \right) \\
& =\left( {{y}^{2}}+5 \right)\left( {{y}^{2}}+4 \right) \\
\end{align}$
Complete step by step solution:
We have been given the division of two quadratic equations. We need to find the factor of the equations.
The two quadratic equations are ${{y}^{4}}+9{{y}^{2}}+20$ and ${{y}^{2}}+4$.
We use the vanishing method to solve the numerator.
We find the value of ${{y}^{2}}=a$ for which the function $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20=0$.
We take ${{y}^{2}}=a=-4$. We can see $f\left( -4 \right)={{\left( -4 \right)}^{2}}+9\times \left( -4 \right)+20=16-36+20=0$.
So, the factor of the $f\left( y \right)={{y}^{4}}+9{{y}^{2}}+20$ will be the function $\left( {{y}^{2}}+4 \right)$.
Therefore, the term $\left( {{y}^{2}}+4 \right)$ is a factor of the polynomial ${{y}^{4}}+9{{y}^{2}}+20$.
So, \[{{y}^{4}}+9{{y}^{2}}+20=\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)\].
Now we put the factored values for the two equations.
We get \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}\].
Now we can see in the denominator and the numerator the common factor is $\left( {{y}^{2}}+4 \right)$.
We can eliminate the factor from both denominator and the numerator.
So, \[\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}=\dfrac{\left( {{y}^{2}}+4 \right)\left( {{y}^{2}}+5 \right)}{\left( {{y}^{2}}+4 \right)}=\left( {{y}^{2}}+5 \right)\].
Therefore, the simplified form of $\dfrac{{{y}^{4}}+9{{y}^{2}}+20}{{{y}^{2}}+4}$ is $\left( {{y}^{2}}+5 \right)$.
Note: We can also factorise the quadratic equations using grouping method.
In case of ${{y}^{4}}+9{{y}^{2}}+20$, we break the middle term $9{{y}^{2}}$ into two parts of $5{{y}^{2}}$ and $4{{y}^{2}}$.
So, ${{y}^{4}}+9{{y}^{2}}+20={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20$.
Factorising we get
$\begin{align}
& {{y}^{4}}+9{{y}^{2}}+20 \\
& ={{y}^{4}}+5{{y}^{2}}+4{{y}^{2}}+20 \\
& ={{y}^{2}}\left( {{y}^{2}}+5 \right)+4\left( {{y}^{2}}+5 \right) \\
& =\left( {{y}^{2}}+5 \right)\left( {{y}^{2}}+4 \right) \\
\end{align}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

What is the difference between Atleast and Atmost in class 9 maths CBSE

Is it true that area of a segment of a circle is less class 9 maths CBSE
