
How do you divide $\dfrac{{{x}^{4}}-16}{x+2}$?
Answer
452.4k+ views
Hint: The given quadratic equations need to be simplified. The equation can be factored into the multiplication form of linear equations. If there is any common factor then we eliminate that to find the simplified form of the given expression $\dfrac{{{x}^{4}}-16}{x+2}$.
Complete step by step solution:
We have been given the division of one quadratic equation and one linear equation. We need to find the factor of the quadratic equation.
The quadratic equation is $\left( {{x}^{4}}-16 \right)$.
For $g\left( x \right)=\left( {{x}^{4}}-16 \right)$, we use the identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Putting the values of $a={{x}^{2}};b=4$, we get \[{{x}^{4}}-16=\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\].
We can again factor the quadratic equation \[\left( {{x}^{2}}-4 \right)\] using same process.
We take the values of $a=x;b=2$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, \[\left( {{x}^{2}}-4 \right)=\left( x-2 \right)\left( x+2 \right)\].
So, final factorisation is \[{{x}^{4}}-16=\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\]
Now we put the factorised values for the two equations.
We get \[\dfrac{{{x}^{4}}-16}{x+2}=\dfrac{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}{\left( x+2 \right)}\].
Now we can see in the denominator and the numerator the common factor is \[\left( x+2 \right)\].
We can eliminate the factor from both denominator and the numerator.
So, \[\dfrac{{{x}^{4}}-16}{x+2}=\dfrac{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}{\left( x+2 \right)}=\left( x-2 \right)\left( {{x}^{2}}+4 \right)\]. The only condition being $x\ne -2$.
Therefore, the simplified form of \[\dfrac{{{x}^{4}}-16}{x+2}\] is \[\left( x-2 \right)\left( {{x}^{2}}+4 \right)\].
Note: We can verify the factors for the functions.
We can validate the other solution of $x=2$ for $f\left( x \right)=\left( {{x}^{4}}-16 \right)$. We put the value of $x=2$ in the equation.
\[f\left( 2 \right)=\left( {{2}^{4}}-16 \right)=16-16=0\].
Complete step by step solution:
We have been given the division of one quadratic equation and one linear equation. We need to find the factor of the quadratic equation.
The quadratic equation is $\left( {{x}^{4}}-16 \right)$.
For $g\left( x \right)=\left( {{x}^{4}}-16 \right)$, we use the identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
Putting the values of $a={{x}^{2}};b=4$, we get \[{{x}^{4}}-16=\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)\].
We can again factor the quadratic equation \[\left( {{x}^{2}}-4 \right)\] using same process.
We take the values of $a=x;b=2$ for ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
So, \[\left( {{x}^{2}}-4 \right)=\left( x-2 \right)\left( x+2 \right)\].
So, final factorisation is \[{{x}^{4}}-16=\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)\]
Now we put the factorised values for the two equations.
We get \[\dfrac{{{x}^{4}}-16}{x+2}=\dfrac{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}{\left( x+2 \right)}\].
Now we can see in the denominator and the numerator the common factor is \[\left( x+2 \right)\].
We can eliminate the factor from both denominator and the numerator.
So, \[\dfrac{{{x}^{4}}-16}{x+2}=\dfrac{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}{\left( x+2 \right)}=\left( x-2 \right)\left( {{x}^{2}}+4 \right)\]. The only condition being $x\ne -2$.
Therefore, the simplified form of \[\dfrac{{{x}^{4}}-16}{x+2}\] is \[\left( x-2 \right)\left( {{x}^{2}}+4 \right)\].
Note: We can verify the factors for the functions.
We can validate the other solution of $x=2$ for $f\left( x \right)=\left( {{x}^{4}}-16 \right)$. We put the value of $x=2$ in the equation.
\[f\left( 2 \right)=\left( {{2}^{4}}-16 \right)=16-16=0\].
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

Name one staple crop of India and the regions where class 9 social science CBSE
