Answer
Verified
441.3k+ views
Hint: H-alpha is a spectral line which is deep-red. This can be seen in the Balmer series for the shortest transition. For the frequency, we will first find the
corresponding energy in the 3rd orbit 2nd orbit and then find the difference. We will use the
Planck’s formula which relates energy and the frequency to find the answer.
Formula used:
The formula which relates energy and the frequency is given below:
$E = hf$
Where, $h$ is the Planck’s constant, $f$ is the frequency, $E$ is the energy.
Complete step by step solution:
There are six series in hydrogen spectrum they are
Lyman series, Balmer series, Paschen series, Brackett series, Pfund series and Humphreys series. Out of these six only Balmer series is imaginatively called as alpha, beta, gamma and so on…
so ${H_\alpha }$ electron transition in hydrogen atom must take place 3rd orbital to 2nd orbital
i.e; electron jumps from n=3 to n=2.
For hydrogen atom energy in ${n^{th}}$orbital
${E_n} = - {{13.6}}{{{n^2}}}eV$
So, for n=3
$
{E_3} = - {{13.6}}{{{3^2}}}eV \\
\Rightarrow {E_3} = - 1.51eV \\ $
And for n=2
$
{E_2} = - {{13.6}}{{{2^2}}}eV \\
\Rightarrow {E_2} = - 3.4eV \\ $
Energy difference between these two shells will be
$
\Delta E = {E_3} - {E_2} \\
\Rightarrow \Delta E = - 1.51 - ( - 3.4) \\
\Rightarrow \Delta E = 1.89eV \\ $
This will be the energy of the emitted photon.
Using planck's quantum theory we have
$E = hf$
$
\Rightarrow f = {E}{h} \\
\Rightarrow f = {{1.89 \times 1.6 \times {{10}^{ - 19}}}}{{6.63 \times 10 \times {{10}^{ - 34}}}} \\
\therefore f = 4.56 \times {10^{14}}Hz \\ $
Hence frequency of ${H_\alpha }$is $4.56 \times {10^{14}}Hz$.
Note:The Balmer series lines that we see are imaginatively called alpha, beta, gamma and so on…, so ${H_\alpha }$ line corresponds to the first line of the Balmer series in other words ${H_\alpha }$ spectrum is produced when electrons from a hydrogen atom jumps from 3rd orbital to 2nd orbital as for Balmer series lowest orbital is 2nd orbital. It is important to remember that higher the energy emitted by the electron, higher will be its frequency.
corresponding energy in the 3rd orbit 2nd orbit and then find the difference. We will use the
Planck’s formula which relates energy and the frequency to find the answer.
Formula used:
The formula which relates energy and the frequency is given below:
$E = hf$
Where, $h$ is the Planck’s constant, $f$ is the frequency, $E$ is the energy.
Complete step by step solution:
There are six series in hydrogen spectrum they are
Lyman series, Balmer series, Paschen series, Brackett series, Pfund series and Humphreys series. Out of these six only Balmer series is imaginatively called as alpha, beta, gamma and so on…
so ${H_\alpha }$ electron transition in hydrogen atom must take place 3rd orbital to 2nd orbital
i.e; electron jumps from n=3 to n=2.
For hydrogen atom energy in ${n^{th}}$orbital
${E_n} = - {{13.6}}{{{n^2}}}eV$
So, for n=3
$
{E_3} = - {{13.6}}{{{3^2}}}eV \\
\Rightarrow {E_3} = - 1.51eV \\ $
And for n=2
$
{E_2} = - {{13.6}}{{{2^2}}}eV \\
\Rightarrow {E_2} = - 3.4eV \\ $
Energy difference between these two shells will be
$
\Delta E = {E_3} - {E_2} \\
\Rightarrow \Delta E = - 1.51 - ( - 3.4) \\
\Rightarrow \Delta E = 1.89eV \\ $
This will be the energy of the emitted photon.
Using planck's quantum theory we have
$E = hf$
$
\Rightarrow f = {E}{h} \\
\Rightarrow f = {{1.89 \times 1.6 \times {{10}^{ - 19}}}}{{6.63 \times 10 \times {{10}^{ - 34}}}} \\
\therefore f = 4.56 \times {10^{14}}Hz \\ $
Hence frequency of ${H_\alpha }$is $4.56 \times {10^{14}}Hz$.
Note:The Balmer series lines that we see are imaginatively called alpha, beta, gamma and so on…, so ${H_\alpha }$ line corresponds to the first line of the Balmer series in other words ${H_\alpha }$ spectrum is produced when electrons from a hydrogen atom jumps from 3rd orbital to 2nd orbital as for Balmer series lowest orbital is 2nd orbital. It is important to remember that higher the energy emitted by the electron, higher will be its frequency.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it