Answer
Verified
425.1k+ views
Hint:We explain the main function of the given equation $y=\sec \left( \dfrac{x}{2} \right)$. We take the general equation and explain the amplitude, period. Then we equate the given function $y=\sec\left( \dfrac{x}{2} \right)$ with the general one and find the graph.
Complete step by step solution:
We need to find the amplitude, period for $y=\sec \left( \dfrac{x}{2} \right)$.
The main function of the given equation is $\sec x$. The period of $\cos x$ is $2\pi $.
We define the general formula to explain the amplitude, period for $\sec x$.
The $\sec x$ changes to $A\sec \left[ B\left( x+C \right) \right]+D$, the amplitude and the period becomes $\left| A \right|$ and $\dfrac{2\pi }{\left| B \right|}$.
Now we explain the things for the given $y=\sec \left( \dfrac{x}{2} \right)$.
$y=\sec \left( \dfrac{x}{2} \right)=1\times \sec \left[ \dfrac{1}{2}\times x \right]$. We equate with $A\sec \left[ B\left( x+C \right) \right]+D$.
The values will be \[\left| A \right|=1;\left| B \right|=\dfrac{1}{2}\]. The period is $\dfrac{2\pi}{\dfrac{1}{2}}=2\pi \times 2=4\pi $.
Therefore, the amplitude and period for $y=\sec \left( \dfrac{x}{2} \right)$ is $1,4\pi $ respectively.
The usual common graph which is easier to plot on the graph is $y=\sec x$.
The graph is an oscillating graph with boundary being $\left( -\infty ,-1 \right)$ and $\left( 1,\infty\right)$.
The domain for the graph $y=\sec x$ is $\mathbb{R}$.
The range for the graph $y=\sec x$ is $\mathbb{R}\backslash \left( -1,1 \right)$.
Now depending on the above-mentioned graph, we are going to first find the graph of
$y=\sec \left( \dfrac{x}{2} \right)$.
The change between $y=\sec x$ and $y=\sec \left( \dfrac{x}{2} \right)$ is that the graph is now stretched for twice its previous area.
The domain for the graph $y=\sec \left( \dfrac{x}{2} \right)$ is $\mathbb{R}$.
The range for the graph $y=\sec \left( \dfrac{x}{2} \right)$ is $\mathbb{R}\backslash \left( -1,1 \right)$.
Note: Amplitude is the vertical distance from the X-axis to the highest (or lowest) point on a sin or cosine curve. Period of each generalized sine or cosine curve is the length of one complete cycle. The previous graphs were oscillating for an area of $\pi $ and now it’s for $2\pi $.
Complete step by step solution:
We need to find the amplitude, period for $y=\sec \left( \dfrac{x}{2} \right)$.
The main function of the given equation is $\sec x$. The period of $\cos x$ is $2\pi $.
We define the general formula to explain the amplitude, period for $\sec x$.
The $\sec x$ changes to $A\sec \left[ B\left( x+C \right) \right]+D$, the amplitude and the period becomes $\left| A \right|$ and $\dfrac{2\pi }{\left| B \right|}$.
Now we explain the things for the given $y=\sec \left( \dfrac{x}{2} \right)$.
$y=\sec \left( \dfrac{x}{2} \right)=1\times \sec \left[ \dfrac{1}{2}\times x \right]$. We equate with $A\sec \left[ B\left( x+C \right) \right]+D$.
The values will be \[\left| A \right|=1;\left| B \right|=\dfrac{1}{2}\]. The period is $\dfrac{2\pi}{\dfrac{1}{2}}=2\pi \times 2=4\pi $.
Therefore, the amplitude and period for $y=\sec \left( \dfrac{x}{2} \right)$ is $1,4\pi $ respectively.
The usual common graph which is easier to plot on the graph is $y=\sec x$.
The graph is an oscillating graph with boundary being $\left( -\infty ,-1 \right)$ and $\left( 1,\infty\right)$.
The domain for the graph $y=\sec x$ is $\mathbb{R}$.
The range for the graph $y=\sec x$ is $\mathbb{R}\backslash \left( -1,1 \right)$.
Now depending on the above-mentioned graph, we are going to first find the graph of
$y=\sec \left( \dfrac{x}{2} \right)$.
The change between $y=\sec x$ and $y=\sec \left( \dfrac{x}{2} \right)$ is that the graph is now stretched for twice its previous area.
The domain for the graph $y=\sec \left( \dfrac{x}{2} \right)$ is $\mathbb{R}$.
The range for the graph $y=\sec \left( \dfrac{x}{2} \right)$ is $\mathbb{R}\backslash \left( -1,1 \right)$.
Note: Amplitude is the vertical distance from the X-axis to the highest (or lowest) point on a sin or cosine curve. Period of each generalized sine or cosine curve is the length of one complete cycle. The previous graphs were oscillating for an area of $\pi $ and now it’s for $2\pi $.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE