Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# Give advantages and disadvantages of series and parallel connection of resistors.

Last updated date: 13th Jun 2024
Total views: 393.3k
Views today: 11.93k
Verified
393.3k+ views
Hint: Recall how we group resistors and what the types are. One must know how the intensity of current and voltage changes in each type. Then we will move to their advantages and disadvantages and where shall we use a specific type of grouping.

Formula Used:
For series grouping of resistors,
$R = {R_1} + {R_2} + {R_3} + ...$
Where $R$ is the equivalent resistance of the individual resistances ${R_1},{R_2},{R_3}...$ in series connection
For parallel grouping of resistances,
$R = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ...$
Where $R$ is the equivalent resistance of the individual resistances ${R_1},{R_2},{R_3}...$ in parallel connection.

Let’s start by what we mean by grouping of resistors. Replacing a number of resistors by a single equivalent resistor is known as grouping of resistors. Resistors are grouped either in series or in parallel or mixed combination. In series grouping of resistors, a number of resistances are connected such that we can proceed from one terminal to another terminal of a battery only along a single path.

In series grouping the current flowing through each resistance is the same and the potential difference across each resistor is different which is directly proportional to each individual resistance.

In case of parallel grouping of resistors, a number of resistances are connected such that we can proceed from one terminal to another of the battery in multiple path across resistors. In parallel grouping we see that potential difference of each resistor is same that is, the potential difference of the battery. And the current flowing through each resistance is different that is inversely proportional to the resistace.

Look at the following diagram.

Here the circuit is connected to a battery of emf $5V$. And the resistances ${R_1},{R_2},{R_3}$ are connected in series. Their equivalent resistance is connected in parallel to the resistor ${R_2}$.