
What is the frequency of a yellow lamp with a wavelength of 590 nm?
Answer
516.3k+ views
Hint: To solve this question we first need to know what is wavelength. Wavelength is the distance between two successive troughs of a wave, or the distance between two successive crests of a wave.
Complete answer:
We know that frequency is defined as the number of vibrations or cycles per unit of time. It is denoted either by the Greek letter $\nu $ or by \[\].
Now, in wave propagation, the relation between wavelength and frequency, in a vacuum, can be given by
\[\nu =\dfrac{c}{\lambda }\]
Where $\nu $ is the frequency, $\lambda $ is the wavelength and c is the speed of light (3$\times {{10}^{8}}$ m/s).
From this equation, we can see that frequency and wavelength are inversely proportional. That means that when there is an increase in wavelength, the frequency decreases.
The SI unit of speed is m/s and the SI unit of wavelength is m. So, the SI suit of frequency ${{s}^{-1}}$ is Hertz and has the dimensions ${{T}^{-1}}$.
Now, a yellow lamp produces light of the wavelength 590 nm.
We know that 1 nanometer or 1 nm = 1$\times {{10}^{-9}}$ m.
So, the wavelength of light produced by a yellow lamp is 590$\times {{10}^{-9}}$ m.
Hence,
\[\begin{align}
& \nu =\dfrac{3\times {{10}^{8}}}{590\times {{10}^{-9}}} \\
& \nu =5.085\times {{10}^{14}}{{s}^{-1}} \\
\end{align}\]
The frequency of light produced from a yellow lamp with a wavelength of 590 nm is \[5.085\times {{10}^{14}}{{s}^{-1}}\].
Note:
Frequency can also be defined from the equation that defines the relationship between time period and frequency.
\[=\dfrac{1}{T}\]
Where time period (T) can be defined as the time taken to complete one cycle of a repeated occurrence.
Complete answer:
We know that frequency is defined as the number of vibrations or cycles per unit of time. It is denoted either by the Greek letter $\nu $ or by \[\].
Now, in wave propagation, the relation between wavelength and frequency, in a vacuum, can be given by
\[\nu =\dfrac{c}{\lambda }\]
Where $\nu $ is the frequency, $\lambda $ is the wavelength and c is the speed of light (3$\times {{10}^{8}}$ m/s).
From this equation, we can see that frequency and wavelength are inversely proportional. That means that when there is an increase in wavelength, the frequency decreases.
The SI unit of speed is m/s and the SI unit of wavelength is m. So, the SI suit of frequency ${{s}^{-1}}$ is Hertz and has the dimensions ${{T}^{-1}}$.
Now, a yellow lamp produces light of the wavelength 590 nm.
We know that 1 nanometer or 1 nm = 1$\times {{10}^{-9}}$ m.
So, the wavelength of light produced by a yellow lamp is 590$\times {{10}^{-9}}$ m.
Hence,
\[\begin{align}
& \nu =\dfrac{3\times {{10}^{8}}}{590\times {{10}^{-9}}} \\
& \nu =5.085\times {{10}^{14}}{{s}^{-1}} \\
\end{align}\]
The frequency of light produced from a yellow lamp with a wavelength of 590 nm is \[5.085\times {{10}^{14}}{{s}^{-1}}\].
Note:
Frequency can also be defined from the equation that defines the relationship between time period and frequency.
\[=\dfrac{1}{T}\]
Where time period (T) can be defined as the time taken to complete one cycle of a repeated occurrence.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

