For a weak acid $\text{HA}$
\[\text{HA}\,\,\rightleftharpoons \,\,{{\text{H}}^{\text{+}}}\text{+}\,{{\text{A}}^{\text{-}}}\,\,\,\,{{\text{K}}_{\text{a}}}\text{=10}\]
When the concentration of the acid is $\text{10M}$, then the degree of dissociation of acid is-
(A) $1$
(B) $0.618$
(C) $0.309$
(D) None of them
Answer
Verified
450.6k+ views
Hint:. For a weak electrolyte the degree of dissociation is directly proportional to the square root of dilution or inversely proportional to square root of concentration. This law is known as Ostwald Dilution law.
- At infinite dilution the value of degree of dissociation becomes one.
Complete step by step answer:
To calculate the degree of dissociation we will apply Ostwald Dilution law.
For a weak acid
\[\begin{align}
& \text{HA}\,\,\rightleftharpoons \,\,{{\text{H}}^{\text{+}}}\text{+}\,{{\text{A}}^{\text{-}}}\, \\
& \,\,\,\begin{matrix}
\text{C} & \,\,\,\,\,\,\,\text{0} & \text{0} \\
\end{matrix}\, \\
& \begin{matrix}
\text{C-C }\!\!\alpha\!\!\text{ } & \text{C }\!\!\alpha\!\!\text{ } & \text{C }\!\!\alpha\!\!\text{ } \\
\end{matrix}\,\,\,\,\,\,\,\,\,\,\{\text{where}\,\,\,\,\,\text{ }\!\!\alpha\!\!\text{ }\,\,\text{= degree}\,\text{of dissociation}\,\} \\
& \text{so,}\,\,\,\text{from}\,\text{law}\,\text{of}\,\text{mass}\,\,\text{action}\,\,\,\,\,\,\,\,\,\,\,{{\text{K}}_{\text{a}}}\text{=}\dfrac{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{ }\!\![\!\!\text{ }{{\text{A}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ HA }\!\!]\!\!\text{ }}........(i)\,\,\,\,\,\,\,\,\,\,\{\text{where}\,\,\,\,\,{{\text{K}}_{\text{a}}}=\text{ionisation}\,\text{constant}\,\text{of}\,\text{acid}\} \\
\end{align}\]
So from equation (i) we get
\[\]\[\begin{align}
& {{\text{K}}_{\text{a}}}\text{=}\,\,\text{C}{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}} \\
& \text{so}\,\,\,\,\text{ }\!\!\alpha\!\!\text{ =}\,\,\sqrt{\dfrac{{{\text{K}}_{\text{a}}}}{\text{C}}}.......(ii) \\
\end{align}\]
After putting the value of \[\,{{K}_{a}}=10\]and $\text{C = 10M}$ in the equation (ii)
We get
\[\begin{align}
& \text{ }\!\!\alpha\!\!\text{ =}\,\,\sqrt{\dfrac{{{\text{K}}_{\text{a}}}}{\text{C}}}.......(ii) \\
& \text{ }\!\!\alpha\!\!\text{ =}\,\,\sqrt{\dfrac{10}{10}} \\
& \text{ }\!\!\alpha\!\!\text{ }=\,1 \\
\end{align}\]
So, the correct answer is “Option A”.
Additional information: Weak acids are weak electrolytes which are partially ionized in the aqueous solution.
- Degree of dissociation also depends on temperature. On increasing temperature ionisation increases because dissociation is an endothermic process.
- Value of \[\text{ }\!\!\alpha\!\!\text{ }\] for strong electrolyte is one. The degree of dissociation of an electrolyte also depends on the nature of the solvent. If the dielectric constant of solvent increases then the value of \[\text{ }\!\!\alpha\!\!\text{ }\] also increases
Note: Ostwald dilution law is applicable for weak electrolyte not for the strong electrolyte.
According to dilution law when weak electrolyte is diluted the degree of dissociation of solution increases.
- The value of concentration should be in terms of molarity and normality to calculate the value of degree of dissociation.
- ${{\text{K}}_{\text{a}}}$ Represent the ionisation constant of weak acid which remains constant at constant temperature.
- At infinite dilution the value of degree of dissociation becomes one.
Complete step by step answer:
To calculate the degree of dissociation we will apply Ostwald Dilution law.
For a weak acid
\[\begin{align}
& \text{HA}\,\,\rightleftharpoons \,\,{{\text{H}}^{\text{+}}}\text{+}\,{{\text{A}}^{\text{-}}}\, \\
& \,\,\,\begin{matrix}
\text{C} & \,\,\,\,\,\,\,\text{0} & \text{0} \\
\end{matrix}\, \\
& \begin{matrix}
\text{C-C }\!\!\alpha\!\!\text{ } & \text{C }\!\!\alpha\!\!\text{ } & \text{C }\!\!\alpha\!\!\text{ } \\
\end{matrix}\,\,\,\,\,\,\,\,\,\,\{\text{where}\,\,\,\,\,\text{ }\!\!\alpha\!\!\text{ }\,\,\text{= degree}\,\text{of dissociation}\,\} \\
& \text{so,}\,\,\,\text{from}\,\text{law}\,\text{of}\,\text{mass}\,\,\text{action}\,\,\,\,\,\,\,\,\,\,\,{{\text{K}}_{\text{a}}}\text{=}\dfrac{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{ }\!\![\!\!\text{ }{{\text{A}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ HA }\!\!]\!\!\text{ }}........(i)\,\,\,\,\,\,\,\,\,\,\{\text{where}\,\,\,\,\,{{\text{K}}_{\text{a}}}=\text{ionisation}\,\text{constant}\,\text{of}\,\text{acid}\} \\
\end{align}\]
So from equation (i) we get
\[\]\[\begin{align}
& {{\text{K}}_{\text{a}}}\text{=}\,\,\text{C}{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}} \\
& \text{so}\,\,\,\,\text{ }\!\!\alpha\!\!\text{ =}\,\,\sqrt{\dfrac{{{\text{K}}_{\text{a}}}}{\text{C}}}.......(ii) \\
\end{align}\]
After putting the value of \[\,{{K}_{a}}=10\]and $\text{C = 10M}$ in the equation (ii)
We get
\[\begin{align}
& \text{ }\!\!\alpha\!\!\text{ =}\,\,\sqrt{\dfrac{{{\text{K}}_{\text{a}}}}{\text{C}}}.......(ii) \\
& \text{ }\!\!\alpha\!\!\text{ =}\,\,\sqrt{\dfrac{10}{10}} \\
& \text{ }\!\!\alpha\!\!\text{ }=\,1 \\
\end{align}\]
So, the correct answer is “Option A”.
Additional information: Weak acids are weak electrolytes which are partially ionized in the aqueous solution.
- Degree of dissociation also depends on temperature. On increasing temperature ionisation increases because dissociation is an endothermic process.
- Value of \[\text{ }\!\!\alpha\!\!\text{ }\] for strong electrolyte is one. The degree of dissociation of an electrolyte also depends on the nature of the solvent. If the dielectric constant of solvent increases then the value of \[\text{ }\!\!\alpha\!\!\text{ }\] also increases
Note: Ostwald dilution law is applicable for weak electrolyte not for the strong electrolyte.
According to dilution law when weak electrolyte is diluted the degree of dissociation of solution increases.
- The value of concentration should be in terms of molarity and normality to calculate the value of degree of dissociation.
- ${{\text{K}}_{\text{a}}}$ Represent the ionisation constant of weak acid which remains constant at constant temperature.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Biology: Engaging Questions & Answers for Success
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE